RESUMO
BACKGROUND: Lead (Pb) is a harmful pollutant that disrupts normal functions from the cell to organ levels. Salix babylonica is characterized by high biomass productivity, high transpiration rates, and species specific Pb. Better understanding the accumulating and transporting Pb capability in shoots and roots of S. babylonica, the toxic effects of Pb and the subcellular distribution of Pb is very important. RESULTS: Pb exerted inhibitory effects on the roots and shoots growth at all Pb concentrations. According to the results utilizing inductively coupled plasma atomic emission spectrometry (ICP-AES), S. babylonica can be considered as a plant with great phytoextraction potentials as translocation factor (TF) value > 1 is observed in all treatment groups throughout the experiment. The Leadmium™ Green AM dye test results indicated that Pb ions initially entered elongation zone cells and accumulated in this area. Then, ions were gradually accumulated in the meristem zone. After 24 h of Pb exposure, Pb accumulated in the meristem zone. The scanning electron microscopy (SEM) and energy-dispersive X-ray analyses (EDXA) results confirmed the fluorescent probe observations and indicated that Pb was localized to the cell wall and cytoplasm. In transverse sections of the mature zone, Pb levels in the cell wall and cytoplasm of epidermal cells was the lowest compared to cortical and vessel cells, and an increasing trend in Pb content was detected in cortical cells from the epidermis to vascular cylinder. Similar results were shown in the Pb content in the cell wall and cytoplasm of the transverse sections of the meristem. Cell damage in the roots exposed to Pb was detected by propidium iodide (PI) staining, which was in agreement with the findings of Pb absorption in different zones of S. babylonica roots under Pb stress. CONCLUSION: S. babylonica L. is observed as a plant with great potential of Pb-accumulation and Pb-tolerance. The information obtained here of Pb accumulation and localization in S. babylonica roots can furthers our understanding of Pb-induced toxicity and its tolerance mechanisms, which will provide valuable and scientific information to phytoremediation investigations of other woody plants under Pb stress.
Assuntos
Chumbo/metabolismo , Raízes de Plantas/metabolismo , Salix/metabolismo , Poluentes do Solo/metabolismo , Chumbo/toxicidade , Raízes de Plantas/ultraestrutura , Salix/efeitos dos fármacos , Salix/crescimento & desenvolvimento , Salix/ultraestrutura , Plântula/efeitos dos fármacos , Plântula/metabolismoRESUMO
Cadmium (Cd), a ubiquitous and highly toxic heavy metal pollutant, is toxic to animals and plants. Calcium (Ca) is an essential component for plant growth and reduces plant Cd absorption by competing with Cd. To gain deeper insight into the effects of Ca on Cd absorption, translocation, subcellular distribution, and chemical forms in S. matsudana seedlings under Cd stress, an investigation was conducted on these properties. Adding Ca alleviated Cd physiological toxicity in S. matsudana, reduced Cd absorption, increased the translocation from roots to shoots, lead to subcellular redistribution of Cd by increasing the proportion of Cd in soluble fractions but decreasing Cd in the cell wall and changed the chemical forms of Cd from 0.6 mol/L HCl- and 2% HAc-extracted Cd to 1 mol/L NaCl-extracted Cd. The energy dispersive X-ray analyses (EDXA) results revealed that after adding Ca, Cd was transferred through the root epidermis, cortex, endodermis, and vascular cylinder, transported to the shoots, and was highly accumulated in leaf epidermal and mesophyll cells, but less in leaf vein and guard cells. The genes involved in Cd uptake and xylem loading included NRAMP1, ZIP8, HMA2, and HMA4, which were up-regulated significantly (P < 0.05) in the Cd and Cd + Ca treatments compared to the control. The findings of this study provide new insight into the mechanism that Ca alleviates Cd toxicity in woody tree species, as well as propose an important prospect of Ca addition for improving the phytoremediation of Cd contamination.