Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8363, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102142

RESUMO

Selective protein degradation typically involves substrate recognition via short linear motifs known as degrons. Various degrons can be found at protein termini from bacteria to mammals. While N-degrons have been extensively studied, our understanding of C-degrons is still limited. Towards a comprehensive understanding of eukaryotic C-degron pathways, here we perform an unbiased survey of C-degrons in budding yeast. We identify over 5000 potential C-degrons by stability profiling of random peptide libraries and of the yeast C­terminome. Combining machine learning, high-throughput mutagenesis and genetic screens reveals that the SCF ubiquitin ligase targets ~40% of degrons using a single F-box substrate receptor Das1. Although sequence-specific, Das1 is highly promiscuous, recognizing a variety of C-degron motifs. By screening for full-length substrates, we implicate SCFDas1 in degradation of orphan protein complex subunits. Altogether, this work highlights the variety of C-degron pathways in eukaryotes and uncovers how an SCF/C-degron pathway of broad specificity contributes to proteostasis.


Assuntos
Degrons , Proteínas Ligases SKP Culina F-Box , Animais , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Domínios Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mamíferos/metabolismo
2.
Chem Biol Drug Des ; 97(3): 665-673, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33006799

RESUMO

Adverse drug reactions (ADRs) are pharmacological events triggered by drug interactions with various sources of origin including drug-drug interactions. While there are many computational studies that explore models to predict ADRs originating from single drugs, only a few of them explore models that predict ADRs from drug combinations. Further, as far as we know, none of them have developed models using transcriptomic data, specifically the LINCS L1000 drug-induced gene expression data to predict ADRs for drug combinations. In this study, we use the TWOSIDES database as a source of ADRs originating from two-drug combinations. 34,549 common drug pairs between these two databases were used to train an artificial neural network (ANN), to predict 243 ADRs that were induced by at least 10% of the drug pairs. Our model predicts the occurrence of these ADRs with an average accuracy of 82% across a multifold cross-validation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Redes Neurais de Computação , Bases de Dados Factuais , Combinação de Medicamentos , Interações Medicamentosas , Humanos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA