Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 330-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309640

RESUMO

Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.


Assuntos
Insulinas , Doenças Neuroinflamatórias , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Inflamação , Glucose
2.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28032215

RESUMO

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Glioma/metabolismo , Hidroxibutiratos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Idoso , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Carcinogênese/patologia , Morte Celular/fisiologia , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Succinato-Semialdeído Desidrogenase/metabolismo
3.
Brain Struct Funct ; 229(3): 705-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329543

RESUMO

In the adult mammalian brain, astrocytes are proposed to be the major Sonic Hedgehog (Shh)-responsive cells. However, the sources of the Shh molecule mediating activation of the pathway are still poorly characterized. The present work investigates the distribution and phenotype of cells expressing Shh mRNA in the adult mouse brain. Using single-molecule fluorescent in situ hybridization (smfISH), we report much broader expression of Shh transcripts in almost all brain regions than originally reported. We identify Shh mRNA in HuC/D+ neuronal populations, including GABAergic (glutamic acid decarboxylase 67, Gad67), cholinergic (choline acetyltransferase, ChAT), dopaminergic (tyrosine hydroxylase, TH), nitrergic (neuronal nitric oxide synthase, nNOS), and in a small population of oligodendroglial cells expressing Sox10 and Olig2 mRNA transcription factors. Further analysis of Shh mRNA in cerebral cortical and hypothalamic neurons suggests that Shh is also expressed by glutamatergic neurons. Interestingly, we did not observe substantial Desert Hedgehog and Indian Hedgehog mRNA signals, nor Shh signals in S100ß+ astrocytes and Iba1+ microglial cells. Collectively, the present work provides the most robust central map of Shh-expressing cells to date and underscores the importance of nitrergic neurons in regulating Shh availability to brain cells. Thus, our study provides a framework for future experiments aimed at better understanding of the functions of Shh signaling in the brain in normal and pathological states, and the characterization of novel regulatory mechanisms of the signaling pathway.


Assuntos
Proteínas Hedgehog , Neurônios , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hibridização in Situ Fluorescente , Neurônios/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Mamíferos
4.
J Clin Invest ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861336

RESUMO

Reproduction is safeguarded by multiple, often cooperative regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein-interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular co-expression of Kiss1r with the astrocyte markers, GFAP and S100-ß, occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells, in the G-KiRKO mouse, altered gene expression of key factors in PGE2 synthesis in astrocytes, and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiRKO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity and LH-secretory profiles. Our data unveil a non-neuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.

5.
Neuroendocrinology ; 98(1): 1-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23735672

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for the central control of reproduction. The coordinated and timely activation of these hypothalamic neurons, which determines sexual development and adult reproductive function, lies under the tight control of a complex array of excitatory and inhibitory transsynaptic inputs. In addition, research conducted over the past 20 years has unveiled the major contribution of glial cells to the control of GnRH neurons. Glia use a variety of molecular and cellular strategies to modulate GnRH neuronal function both at the level of their cell bodies and at their nerve terminals. These mechanisms include the secretion of bioactive molecules that exert paracrine effects on GnRH neurons, juxtacrine interactions between glial cells and GnRH neurons via adhesive molecules and the morphological plasticity of the glial coverage of GnRH neurons. It now appears that glial cells are integral components, along with upstream neuronal networks, of the central control of GnRH neuronal function. This review attempts to summarize our current knowledge of the mechanisms used by glial cells to control GnRH neuronal activity and secretion.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Animais , Comunicação Celular/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Humanos , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
6.
J Neuroendocrinol ; 35(3): e13239, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863859

RESUMO

The third ventricle (3 V) wall of the tuberal hypothalamus is composed of two types of cells; specialized ependymoglial cells called tanycytes located ventrally and ependymocytes dorsally, which control the exchanges between the cerebrospinal fluid and the hypothalamic parenchyma. By regulating the dialogue between the brain and the periphery, tanycytes are now recognized as central players in the control of major hypothalamic functions such as energy metabolism and reproduction. While our knowledge of the biology of adult tanycytes is progressing rapidly, our understanding of their development remains very incomplete. To gain insight into the postnatal maturation of the 3 V ependymal lining, we conducted a comprehensive immunofluorescent study of the mouse tuberal region at four postnatal ages (postnatal day (P) 0, P4, P10, and P20). We analyzed the expression profile of a panel of tanycyte and ependymocyte markers (vimentin, S100, connexin-43 [Cx43], and glial fibrillary acidic protein [GFAP]) and characterized cell proliferation in the 3 V wall using the thymidine analog bromodeoxyuridine. Our results show that most changes in marker expression occur between P4 and P10, with a switch from a 3 V mostly lined by radial cells to the emergence of a tanycytic domain ventrally and an ependymocytic domain dorsally, a drop in cell proliferation and increased expression of S100, Cx43, and GFAP that acquire a mature profile at P20. Our study thus identifies the transition between the first and the second postnatal week as a critical time window for the postnatal maturation of the 3 V wall ependymal lining.


Assuntos
Terceiro Ventrículo , Camundongos , Animais , Masculino , Terceiro Ventrículo/metabolismo , Conexina 43/metabolismo , Neuroglia/metabolismo , Hipotálamo/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células
7.
EBioMedicine ; 96: 104784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37713808

RESUMO

BACKGROUND: We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS: We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS: We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION: Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING: European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR).

8.
J Neuroendocrinol ; 34(5): e13104, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35233849

RESUMO

To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.


Assuntos
Astrócitos , Hormônio Liberador de Gonadotropina , Adulto , Astrócitos/metabolismo , Células Ependimogliais/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Recém-Nascido , Neurônios/metabolismo , Maturidade Sexual/fisiologia
9.
Front Endocrinol (Lausanne) ; 13: 869019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370973

RESUMO

In adult mammals, neural stem cells are localized in three neurogenic regions, the subventricular zone of the lateral ventricle (SVZ), the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the hypothalamus. In the SVZ and the SGZ, neural stem/progenitor cells (NSPCs) express the glial fibrillary acidic protein (GFAP) and selective depletion of these NSPCs drastically decreases cell proliferation in vitro and in vivo. In the hypothalamus, GFAP is expressed by α-tanycytes, which are specialized radial glia-like cells in the wall of the third ventricle also recognized as NSPCs. To explore the role of these hypothalamic GFAP-positive tanycytes, we used transgenic mice expressing herpes simplex virus thymidine kinase (HSV-Tk) under the control of the mouse Gfap promoter and a 4-week intracerebroventricular infusion of the antiviral agent ganciclovir (GCV) which kills dividing cells expressing Tk. While GCV significantly reduced the number and growth of hypothalamus-derived neurospheres from adult transgenic mice in vitro, it causes hypogonadotropic hypogonadism in vivo. The selective death of dividing tanycytes expressing GFAP indeed results in a marked decrease in testosterone levels and testicular weight, as well as vacuolization of the seminiferous tubules and loss of spermatogenesis. Additionally, GCV-treated GFAP-Tk mice show impaired sexual behavior, but no alteration in food intake or body weight. Our results also show that the selective depletion of GFAP-expressing tanycytes leads to a sharp decrease in the number of gonadotropin-releasing hormone (GnRH)-immunoreactive neurons and a blunted LH secretion. Overall, our data show that GFAP-expressing tanycytes play a central role in the regulation of male reproductive function.


Assuntos
Células Ependimogliais , Proteína Glial Fibrilar Ácida , Hipogonadismo , Animais , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/fisiologia , Hipogonadismo/genética , Hipogonadismo/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo
10.
Front Neuroendocrinol ; 31(3): 241-58, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20546773

RESUMO

As the final common pathway for the central control of gonadotropin secretion, GnRH neurons are subjected to numerous regulatory homeostatic and external factors to achieve levels of fertility appropriate to the organism. The GnRH system thus provides an excellent model in which to investigate the complex relationships between neurosecretion, morphological plasticity and the expression of a physiological function. Throughout the reproductive cycle beginning from postnatal sexual development and the onset of puberty to reproductive senescence, and even within the ovarian cycle itself, all levels of the GnRH system undergo morphological plasticity. This structural plasticity within the GnRH system appears crucial to the timely control of reproductive competence within the individual, and as such must have coordinated actions of multiple signals secreted from glial cells, endothelial cells, and GnRH neurons. Thus, the GnRH system must be viewed as a complete neuro-glial-vascular unit that works in concert to maintain the reproductive axis.


Assuntos
Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Células Endoteliais/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Humanos , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , Ovário/metabolismo , Ovário/fisiologia , Puberdade/metabolismo , Puberdade/fisiologia , Receptores LHRH/metabolismo , Receptores LHRH/fisiologia
11.
Handb Clin Neurol ; 179: 125-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225958

RESUMO

The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.


Assuntos
Células-Tronco Neurais , Neurogênese , Adulto , Encéfalo , Humanos , Hipotálamo , Neurônios
12.
Mol Metab ; 47: 101172, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513436

RESUMO

OBJECTIVE: Astrocytes are glial cells proposed as the main Sonic hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. In this study, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. METHODS: We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, and Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined with immunohistofluorescence of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under a high-fat diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity, and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake, and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. RESULTS: Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in the YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and also observed under a HFD. The YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole-body fatty acid oxidation. In contrast, food intake, locomotor activity, and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, activation of the astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and liver kinase B1 (LKB1) after 4 weeks and the glucose transporter GLUT-4 after 32 weeks. CONCLUSIONS: Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Envelhecimento , Animais , Astrócitos/patologia , Metabolismo Energético/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Neurônios/metabolismo , Obesidade , Receptores Patched/deficiência , Receptores Patched/genética , Transdução de Sinais , Ativação Transcricional
13.
Nat Neurosci ; 24(12): 1660-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795451

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Astrócitos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Maturidade Sexual/fisiologia
14.
Stem Cells ; 27(10): 2373-82, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19544474

RESUMO

Gliomas, the most frequent primitive central nervous system tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. Transforming growth factor (TGF)-alpha, an epidermal growth factor family member, is frequently overexpressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGF-alpha is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGF-alpha dedifferentiating effects are associated with cancerous transforming effects, we grafted intracerebrally dedifferentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo, and did not give birth to tumors. When astrocytes dedifferentiated with TGF-alpha were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGF-alpha after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress.


Assuntos
Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/induzido quimicamente , Transformação Celular Neoplásica/induzido quimicamente , Glioma/induzido quimicamente , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador alfa/farmacologia , Animais , Astrócitos/metabolismo , Astrócitos/efeitos da radiação , Neoplasias Encefálicas/fisiopatologia , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Desdiferenciação Celular/efeitos da radiação , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Raios gama/efeitos adversos , Glioma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transplante de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Estresse Fisiológico/fisiologia , Estresse Fisiológico/efeitos da radiação , Fator de Crescimento Transformador alfa/metabolismo
15.
PLoS One ; 15(2): e0229362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078657

RESUMO

In the mature rodent brain, Sonic Hedgehog (Shh) signaling regulates stem and progenitor cell maintenance, neuronal and glial circuitry and brain repair. However, the sources and distribution of Shh mediating these effects are still poorly characterized. Here, we report in the adult mouse brain, a broad expression pattern of Shh recognized by the specific monoclonal C9C5 antibody in a subset (11-12%) of CC1+ mature oligodendrocytes that do not express carbonic anhydrase II. These cells express also Olig2 and Sox10, two oligodendrocyte lineage-specific markers, but not PDGFRα, a marker of oligodendrocyte progenitors. In agreement with oligodendroglial cells being a source of Shh in the adult mouse brain, we identify Shh transcripts by single molecule fluorescent in situ hybridization in a subset of cells expressing Olig2 and Sox10 mRNAs. These findings also reveal that Shh expression is more extensive than originally reported. The Shh-C9C5-associated signal labels the oligodendroglial cell body and decorates by intense puncta the processes. C9C5+ cells are distributed in a grid-like manner. They constitute small units that could deliver locally Shh to its receptor Patched expressed in GFAP+ and S100ß+ astrocytes, and in HuC/D+ neurons as shown in PtcLacZ/+ reporter mice. Postnatally, C9C5 immunoreactivity overlaps the myelination peak that occurs between P10 and P20 and is down regulated during ageing. Thus, our data suggest that C9C5+CC1+ oligodendroglial cells are a source of Shh in the mouse postnatal brain.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/metabolismo , Proteínas Hedgehog/imunologia , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Encéfalo/imunologia , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Oligodendroglia/imunologia , Receptores Patched/imunologia , Receptores Patched/metabolismo
16.
Glia ; 57(4): 362-79, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18803307

RESUMO

Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders.


Assuntos
Astrócitos/fisiologia , Córtex Cerebral/citologia , Receptores ErbB/metabolismo , Hipotálamo/citologia , Transdução de Sinais/fisiologia , Análise de Variância , Bromodesoxiuridina , Proliferação de Células , Células Cultivadas , Receptores ErbB/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Feto , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imunoprecipitação/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1/farmacologia , RNA Interferente Pequeno/farmacologia , Receptor ErbB-4 , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador alfa/farmacologia , Tirosina/metabolismo , Vimentina/metabolismo
17.
Mol Biol Cell ; 17(12): 5141-52, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16987961

RESUMO

Phosphoprotein enriched in astrocytes-15 kDa (PEA-15), a phosphoprotein enriched in astrocytes, inhibits both apoptosis and proliferation in normal and cancerous cells. Here, analysis of PEA-15 expression in glioblastoma organotypic cultures revealed low levels of PEA-15 in tumor cells migrating away from the explants, regardless of the expression levels in the originating explants. Because glioblastomas are highly invasive primary brain tumors that can originate from astrocytes, we explored the involvement of PEA-15 in the control of astrocyte migration. PEA-15-/- astrocytes presented an enhanced motility in vitro compared with their wild-type counterparts. Accordingly, NIH-3T3 cells transfected by green fluorescent protein-PEA-15 displayed a reduced migration. Reexpression of PEA-15 restored PEA-15-/- astrocyte motility to wild-type levels. Pharmacological manipulations excluded a participation of extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt, and calcium/calmodulin-dependent protein kinase II in this effect of PEA-15. In contrast, treatment by bisindolylmaleimide, Gö6976, and rottlerin, and chronic application of phorbol 12-myristate 13-acetate and/or bryostatin-1 indicated that PKC delta mediated PEA-15 inhibition of astrocyte migration. PEA-15-/- astrocytes constitutively expressed a 40-kDa form of PKC delta that was down-regulated upon PEA-15 reexpression. Together, these data reveal a new function for PEA-15 in the inhibitory control of astrocyte motility through a PKC delta-dependent pathway involving the constitutive expression of a catalytic fragment of PKC delta.


Assuntos
Astrócitos/citologia , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C-delta/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas Reguladoras de Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Peso Molecular , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Cicatrização/fisiologia
18.
Endocr Relat Cancer ; 26(1): 215-225, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30139767

RESUMO

Tumours of the anterior pituitary can manifest from all endocrine cell types but the mechanisms for determining their specification are not known. The Hippo kinase cascade is a crucial signalling pathway regulating growth and cell fate in numerous organs. There is mounting evidence implicating this in tumour formation, where it is emerging as an anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing pituitary stem cells. Here, we sought to investigate whether these components are expressed in the human pituitary and if they are deregulated in human pituitary tumours. Analysis of pathway components by immunofluorescence reveals pathway activity during normal human pituitary development and in the adult gland. Poorly differentiated pituitary tumours (null-cell adenomas, adamantinomatous craniopharyngiomas (ACPs) and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent levels. Knockdown of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human pituitary and association of high YAP/TAZ with repression of the differentiated state both in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential prognostic value, opening up putative avenues for treatments.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hipófise/metabolismo , Neoplasias Hipofisárias/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Neoplasias Hipofisárias/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
19.
Endocr Rev ; 39(3): 333-368, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351662

RESUMO

The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.


Assuntos
Barreira Hematoencefálica/fisiologia , Metabolismo Energético/fisiologia , Células Ependimogliais/fisiologia , Hipotálamo/fisiologia , Reprodução/fisiologia , Animais , Humanos
20.
J Comp Neurol ; 526(9): 1419-1443, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29230807

RESUMO

The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.


Assuntos
Hipotálamo/anatomia & histologia , Células-Tronco Neurais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Ontologias Biológicas , Proteínas do Domínio Duplacortina , Humanos , Lemur , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA