Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 14: 51, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23402646

RESUMO

BACKGROUND: Biomarkers and target-specific phenotypes are important to targeted drug design and individualized medicine, thus constituting an important aspect of modern pharmaceutical research and development. More and more, the discovery of relevant biomarkers is aided by in silico techniques based on applying data mining and computational chemistry on large molecular databases. However, there is an even larger source of valuable information available that can potentially be tapped for such discoveries: repositories constituted by research documents. RESULTS: This paper reports on a pilot experiment to discover potential novel biomarkers and phenotypes for diabetes and obesity by self-organized text mining of about 120,000 PubMed abstracts, public clinical trial summaries, and internal Merck research documents. These documents were directly analyzed by the InfoCodex semantic engine, without prior human manipulations such as parsing. Recall and precision against established, but different benchmarks lie in ranges up to 30% and 50% respectively. Retrieval of known entities missed by other traditional approaches could be demonstrated. Finally, the InfoCodex semantic engine was shown to discover new diabetes and obesity biomarkers and phenotypes. Amongst these were many interesting candidates with a high potential, although noticeable noise (uninteresting or obvious terms) was generated. CONCLUSIONS: The reported approach of employing autonomous self-organising semantic engines to aid biomarker discovery, supplemented by appropriate manual curation processes, shows promise and has potential to impact, conservatively, a faster alternative to vocabulary processes dependent on humans having to read and analyze all the texts. More optimistically, it could impact pharmaceutical research, for example to shorten time-to-market of novel drugs, or speed up early recognition of dead ends and adverse reactions.


Assuntos
Biomarcadores , Mineração de Dados/métodos , Fenótipo , Diabetes Insípido/diagnóstico , Diabetes Mellitus/diagnóstico , Humanos , Obesidade/diagnóstico , PubMed , Semântica , Vocabulário Controlado
2.
J Biomed Semantics ; 8(1): 2, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28069052

RESUMO

BACKGROUND: Drug ontologies could help pharmaceutical researchers overcome information overload and speed the pace of drug discovery, thus benefiting the industry and patients alike. Drug-disease relations, specifically drug-indication relations, are a prime candidate for representation in ontologies. There is a wealth of available drug-indication information, but structuring and integrating it is challenging. RESULTS: We created a drug-indication database (DID) of data from 12 openly available, commercially available, and proprietary information sources, integrated by terminological normalization to UMLS and other authorities. Across sources, there are 29,964 unique raw drug/chemical names, 10,938 unique raw indication "target" terms, and 192,008 unique raw drug-indication pairs. Drug/chemical name normalization to CAS numbers or UMLS concepts reduced the unique name count to 91 or 85% of the raw count, respectively, 84% if combined. Indication "target" normalization to UMLS "phenotypic-type" concepts reduced the unique term count to 57% of the raw count. The 12 sources of raw data varied widely in coverage (numbers of unique drug/chemical and indication concepts and relations) generally consistent with the idiosyncrasies of each source, but had strikingly little overlap, suggesting that we successfully achieved source/raw data diversity. CONCLUSIONS: The DID is a database of structured drug-indication relations intended to facilitate building practical, comprehensive, integrated drug ontologies. The DID itself is not an ontology, but could be converted to one more easily than the contributing raw data. Our methodology could be adapted to the creation of other structured drug-disease databases such as for contraindications, precautions, warnings, and side effects.


Assuntos
Ontologias Biológicas , Bases de Dados de Produtos Farmacêuticos , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA