RESUMO
The use of microalgae for nutrient recovery from wastewater and subsequent conversion of the harvested biomass into fertilizers offers a sustainable approach towards creating a circular economy. Nonetheless, the process of drying the harvested microalgae represents an additional cost, and its impact on soil nutrient cycling compared to wet algal biomass is not thoroughly understood. To investigate this, a 56-day soil incubation experiment was conducted to compare the effects of wet and dried Scenedesmus sp. microalgae on soil chemistry, microbial biomass, CO2 respiration, and bacterial community diversity. The experiment also included control treatments with glucose, glucose + ammonium nitrate, and no fertilizer addition. The Illumina Mi-Seq platform was used to profile the bacterial community and in-silico analysis was performed to assess the functional genes involved in N and C cycling processes. The maximum CO2 respiration and microbial biomass carbon (MBC) concentration of dried microalgae treatment were 17% and 38% higher than those of paste microalgae treatment, respectively. NH4+ and NO3- released slowly and through decomposition of microalgae by soil microorganisms as compared to synthetic fertilizer control. The results indicate that heterotrophic nitrification may contribute to nitrate production for both microalgae amendments, as evidenced by low amoA gene abundance and a decrease in ammonium with an increase in nitrate concentration. Additionally, dissimilatory nitrate reduction to ammonium (DNRA) may be contributing to ammonium production in the wet microalgae amendment, as indicated by an increase in nrfA gene and ammonium concentration. This is a significant finding because DNRA leads to N retention in agricultural soils instead of N loss via nitrification and denitrification. Thus, further processing the microalgae through drying or dewetting may not be favorable for fertilizer production as the wet microalgae appeared to promote DNRA and N retention.
Assuntos
Compostos de Amônio , Microalgas , Nitratos/química , Nitrogênio/análise , Solo/química , Matadouros , Dióxido de Carbono/análise , DesnitrificaçãoRESUMO
Sufficient and reliable long-term field data on the growth, productivity and nutrient removal rates of microalgal based wastewater treatment system is essential to validate its overall techno-economic feasibility. Here, we investigated the semi-continuous microalgal cultivation of Scenedesmus sp. in anaerobically digested abattoir effluent (ADAE) for 13 months in outdoor raceway ponds operated at 20 cm depth. This study was initiated with three different cultures consisting of 1) monocultures of Chlorella sp., 2) Scenedesmus sp., and 3) an equal mixed concentration of both microalgae species. However, after 15 weeks, Scenedesmus sp. was found to be the most dominant microalgae species in all the different cultures, even completely taking over the Chlorella sp. monoculture. Over the course of summer and early autumn, the average weekly biomass productivity of Scenedesmus sp. cultures was 12.5 ± 0.6 g m-2 d-1 which was 16% and 30% higher than productivities recorded in spring and winter, respectively. All available ammoniacal nitrogen (NH3-N) was found to be exhausted during each growth period with an average 33.6% nitrogen assimilation rate. The average rate of phosphate and COD (chemical oxygen demand) removals were 85.2% and 37.5% throughout the cultivation period. No significant differences were found in carbohydrate, lipid and protein content of Scenedesmus sp. during different seasons of the year. Over 53% increase in biomass productivity can be achieved if CO2 is added to control culture pH at pH 6.5. Here, we successfully demonstrated reliability of continuous long-term cultivation of microalgae in ADAE for simultaneous wastewater treatment and algal biomass production.
Assuntos
Chlorella , Microalgas , Scenedesmus , Matadouros , Dióxido de Carbono , Reprodutibilidade dos Testes , Nitrogênio , Fosfatos , Carboidratos , LipídeosRESUMO
Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.
Assuntos
Microalgas , Águas Residuárias , Animais , Bovinos , Agricultura , Biomassa , Nitrogênio , FósforoRESUMO
Microalgae can treat waste streams containing elevated levels of organic carbon and nitrogen. This process can be economically attractive if high value products are created simultaneously from the relatively low-cost waste stream. Co-production of two high value microalgal products, phycocyanin and polyhydroxybutyrate (PHB), was investigated using non-axenic Arthrospira platensis MUR126 and supplemental organic carbon (acetate, oxalate, glycerol and combinations). All supplemented cultures had higher biomass yield (g/L) than photoautotrophic control. All cultures produced PHB (3.6-7.8% w/w), except the control and those fed oxalate. Supplemented cultures showed a two to three-fold increase in phycocyanin content over the eight-day cultivation. Results indicate co-production of phycocyanin and PHB is possible in A. platensis, using mixed-waste organic carbon. However, supplementation resulted in growth of extremophile bacteria, particularly in cultures fed glycerol, and this had a negative impact on culture health. Refinement of the carbon dosing rate is required to minimise impacts of native bacterial contamination.
RESUMO
BACKGROUND: Hypertension is one of the most common chronic health problems across the world, resulting in significant global responsibility in developed and developing countries. The aim of this study was to survey the effect of educational intervention on the lifestyle of patients with hypertension. METHODS: This study was a case-control intervention study on 86 patients with hypertension that were selected by simple random sampling from the rural regions of Aligoudarz County in Lorestan Province. Before the intervention, both groups completed the standard questionnaire of HPLP II; two months after the intervention, both groups completed the same questionnaire. The results were analyzed using SPSS software, t-test, and Chi-square test. RESULTS: The mean age and standard deviation in case and control groups were 59.95 ± 7.9 and 64.51 ± 9.2 years, respectively. The mean of the total lifestyle scores was significantly increased in the case group compared with the control group (p < 0.05). In addition, the average scores for the three dimensions of physical activity, nutrition, and stress management after educational intervention in the case group compared to the control group showed a significant increase (p < 0.05, for all). CONCLUSION: Based on the relationship between lifestyle and hypertension, it seems that implementing educational programs in the fields of nutrition, physical activity, and stress management is essential to improvement in disease knowledge and behavior modification among patients with hypertension.