Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 67(6): e28267, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307821

RESUMO

BACKGROUND: The treatment of high-risk neuroblastoma continues to present a formidable challenge to pediatric oncology. Previous studies have shown that Bromodomain and extraterminal (BET) inhibitors can inhibit MYCN expression and suppress MYCN-amplified neuroblastoma in vivo. Furthermore, alterations within RAS-MAPK (mitogen-activated protein kinase) signaling play significant roles in neuroblastoma initiation, maintenance, and relapse, and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors demonstrate efficacy in subsets of neuroblastoma preclinical models. Finally, hyperactivation of RAS-MAPK signaling has been shown to promote resistance to BET inhibitors. Therefore, we examined the antitumor efficacy of combined BET/MEK inhibition utilizing I-BET726 or I-BET762 and trametinib in high-risk neuroblastoma. PROCEDURE: Utilizing a panel of genomically annotated neuroblastoma cell line models, we investigated the in vitro effects of combined BET/MEK inhibition on cell proliferation and apoptosis. Furthermore, we evaluated the effects of combined inhibition in neuroblastoma xenograft models. RESULTS: Combined BET and MEK inhibition demonstrated synergistic effects on the growth and survival of a large panel of neuroblastoma cell lines through augmentation of apoptosis. A combination therapy slowed tumor growth in a non-MYCN-amplified, NRAS-mutated neuroblastoma xenograft model, but had no efficacy in an MYCN-amplified model harboring a loss-of-function mutation in NF1. CONCLUSIONS: Combinatorial BET and MEK inhibition was synergistic in the vast majority of neuroblastoma cell lines in the in vitro setting but showed limited antitumor activity in vivo. Collectively, these data do not support clinical development of this combination in high-risk neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Proteínas/antagonistas & inibidores , Piridonas/farmacologia , Pirimidinonas/farmacologia , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Ecol Evol ; 8(16): 7946-7963, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250675

RESUMO

Short tandem repeats (STRs), also known as microsatellites, are commonly used to noninvasively genotype wild-living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq-based approach and tested its performance using previously genotyped fecal samples from long-term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus-specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq-based approach for genotyping nonhabituated populations and performing comparative analyses across field sites. The new automated high-throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA