Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Appl ; 16(2): 234-249, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793677

RESUMO

Comparing the responses of closely related species to environmental changes is an efficient method to explore adaptive divergence, for a better understanding of the adaptive evolution of marine species under rapidly changing climates. Oysters are keystone species thrive in intertidal and estuarine areas where frequent environmental disturbance occurs including fluctuant salinity. The evolutionary divergence of two sister species of sympatric estuarine oysters, Crassostrea hongkongensis and Crassostrea ariakensis, in response to euryhaline habitats on phenotypes and gene expression, and the relative contribution of species effect, environment effect, and their interaction to the divergence were explored. After a 2-month outplanting at high- and low-salinity locations in the same estuary, the high growth rate, percent survival, and high tolerance indicated by physiological parameters suggested that the fitness of C. ariakensis was higher under high-salinity conditions and that of C. hongkongensis was higher under low-salinity conditions. Moreover, a transcriptomic analysis showed the two species exhibited differentiated transcriptional expression in high- and low-salinity habitats, largely caused by the species effect. Several of the important pathways enriched in divergent genes between species were also salinity-responsive pathways. Specifically, the pyruvate and taurine metabolism pathway and several solute carriers may contribute to the hyperosmotic adaptation of C. ariakensis, and some solute carriers may contribute to the hypoosmotic adaptation of C. hongkongensis. Our findings provide insights into the phenotypic and molecular mechanisms underlying salinity adaptation in marine mollusks, which will facilitate the assessment of the adaptive capacity of marine species in the context of climate change and will also provide practical information for marine resource conservation and aquaculture.

2.
Sci Rep ; 8(1): 8683, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875442

RESUMO

The Pacific oyster Crassostrea gigas is an important cultivated shellfish. As a euryhaline species, it has evolved adaptive mechanisms responding to the complex and changeable intertidal environment that it inhabits. To investigate the genetic basis of this salinity adaptation mechanism, we conducted a genome-wide association study using phenotypically differentiated populations (hyposalinity and hypersalinity adaptation populations, and control population), and confirmed our results using an independent population, high-resolution melting, and mRNA expression analysis. For the hyposalinity adaptation, we determined 24 genes, including Cg_CLCN7 (chloride channel protein 7) and Cg_AP1 (apoptosis 1 inhibitor), involved in the ion/water channel and transporter mechanisms, free amino acid and reactive oxygen species metabolism, immune responses, and chemical defence. Three SNPs located on these two genes were significantly differentiated between groups, as was Cg_CLCN7. For the hypersalinity adaptation, the biological process for positive regulating the developmental process was enriched. Enriched gene functions were focused on transcriptional regulation, signal transduction, and cell growth and differentiation, including calmodulin (Cg_CaM) and ficolin-2 (Cg_FCN2). These genes and polymorphisms possibly play an important role in oyster hyposalinity and hypersalinity adaptation. They not only further our understanding of salinity adaptation mechanisms but also provide markers for highly adaptable oyster strains suitable for breeding.


Assuntos
Crassostrea/genética , Regulação da Expressão Gênica , Tolerância ao Sal , Animais , Crassostrea/fisiologia , Perfilação da Expressão Gênica , Ontologia Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Salinidade , Transcriptoma
3.
PLoS One ; 10(5): e0124401, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951187

RESUMO

BACKGROUND: The Pacific oyster Crassostrea gigas is an important cultivated shellfish that is rich in nutrients. It contains high levels of glycogen, which is of high nutritional value. To investigate the genetic basis of this high glycogen content and its variation, we conducted a candidate gene association analysis using a wild population, and confirmed our results using an independent population, via targeted gene resequencing and mRNA expression analysis. RESULTS: We validated 295 SNPs in the 90 candidate genes surveyed for association with glycogen content, 86 of were ultimately genotyped in all 144 experimental individuals from Jiaonan (JN). In addition, 732 SNPs were genotyped via targeted gene resequencing. Two SNPs (Cg_SNP_TY202 and Cg_SNP_3021) in Cg_GD1 (glycogen debranching enzyme) and one SNP (Cg_SNP_4) in Cg_GP1 (glycogen phosphorylase) were identified as being associated with glycogen content. The glycogen content of individuals with genotypes TT and TC in Cg_SNP_TY202 was higher than that of individuals with genotype CC. The transcript abundance of both glycogen-associated genes was differentially expressed in high glycogen content and low glycogen content individuals. CONCLUSIONS: This study identified three polymorphisms in two genes associated with oyster glycogen content, via candidate gene association analysis. The transcript abundance differences in Cg_GD1 and Cg_GP1 between low- and the high-glycogen content individuals suggests that it is possible that transcript regulation is mediated by variations of Cg_SNP_TY202, Cg_SNP_3021, and Cg_SNP_4. These findings will not only provide insights into the genetic basis of oyster quality, but also promote research into the molecular breeding of oysters.


Assuntos
Crassostrea/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicogênio Fosforilase/genética , Glicogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Crassostrea/química , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genótipo
4.
PLoS One ; 8(3): e58563, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554902

RESUMO

BACKGROUND: The Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster's euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR. RESULTS: Transcriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na(+)/K(+) channel and aquaporin but increased calcium-activated K(+) channel and Ca(2+) channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster's powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas. CONCLUSIONS: Our results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas.


Assuntos
Adaptação Fisiológica/fisiologia , Crassostrea/fisiologia , Genoma/fisiologia , Animais , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Pressão Osmótica/fisiologia , Oceano Pacífico , Salinidade , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA