Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(34): 6897-6904, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35972458

RESUMO

The recognition and discrimination of amino acids are generating continuous interest due to their importance. Herein we developed a series of dynamic covalent reaction constrained aldehyde-derived fluorescent probes for the binding of amino acids with tunable selectivity. Diverse emission behaviors were obtained via pH triggered movement of ring-chain tautomerization equilibrium of aldehyde probes. By taking advantage of the distinct pKa and reactivity of aldehyde probes and amino acids, unique fluorescence signaling patterns were generated, and the selectivity for amino acid recognition was further modulated. The selective recognition of Cys/Hcy was attained at pH 7.4 as a result of thiazolidine formation. The manipulation of the reactivity at pH 10 enabled the realization of high selectivity for His and Cys, respectively. Moreover, pH and redox stimuli-responsive dynamic covalent networks were constructed for the regulation of amino acid recognition. The strategies and results described should be appealing in many aspects, including dynamic assemblies, molecular sensing, biological labeling, and smart materials.


Assuntos
Aminoácidos , Corantes Fluorescentes , Aldeídos/química , Cisteína/química , Corantes Fluorescentes/química , Ionóforos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA