Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(19): 11631-9, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26325404

RESUMO

To quantify the contributions of fossil and biomass sources to the wintertime Arctic aerosol burden source apportionment is reported for elemental (EC) and organic carbon (OC) fractions of six PM10 samples collected during a wintertime (2012-2013) campaign in Barrow, AK. Radiocarbon apportionment of EC indicates that fossil sources contribute an average of 68 ± 9% (0.01-0.07 µg m(-3)) in midwinter decreasing to 49 ± 6% (0.02 µg m(-3)) in late winter. The mean contribution of fossil sources to OC for the campaign was stable at 38 ± 8% (0.04-0.32 µg m(-3)). Samples were also analyzed for organic tracers, including levoglucosan, for use in a chemical mass balance (CMB) source apportionment model. The CMB model was able to apportion 24-53% and 99% of the OC and EC burdens, respectively, during the campaign, with fossil OC contributions ranging from 25 to 74% (0.02-0.09 µg m(-3)) and fossil EC contributions ranging from 73 to 94% (0.03-0.07 µg m(-3)). Back trajectories identified two major wintertime source regions to Barrow: the Russian and North American Arctic. Atmospheric lifetimes of levoglucosan, ranging from 50 to 320 h, revealed variability in wintertime atmospheric processing of this biomass burning tracer. This study allows for unambiguous apportionment of EC to fossil fuel and biomass combustion sources and intercomparison with CMB modeling.


Assuntos
Aerossóis/análise , Carbono/análise , Alaska , Regiões Árticas , Biomassa , Radioisótopos de Carbono/análise , Combustíveis Fósseis , Glucose/análogos & derivados , Glucose/análise , Modelos Teóricos , Estações do Ano , Madeira
3.
Sci Adv ; 5(2): eaau8052, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30788434

RESUMO

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA