Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 32(3): 3660-3672, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297582

RESUMO

Laser cooling of a 5 cm long, 1 mm diameter ytterbium doped (6.56×1025 ions/m3) silica rod by 67 K from room temperature was achieved. For the pump source, a 100 W level ytterbium fiber amplifier was constructed along with a 1032 nm fiber Bragg grating seed laser. Experiments were done in vacuum and monitored with the non-contact differential luminescence thermometry method. Direct measurements of the absorption spectrum as a function of temperature were made, to avoid any possible ambiguities from site-selectivity and deviations from McCumber theory at low temperature. This allowed direct computation of the cooling efficiency versus temperature at the pump wavelength, permitting an estimated heat lift of 1.42 W/m as the sample cooled from ambient temperature to an absolute temperature of 229 K.

2.
Opt Express ; 31(12): 20530-20544, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381446

RESUMO

From laser design to optical refrigeration, experimentally measured fluorescence spectra are often utilized to obtain input parameters for predictive models. However, in materials that exhibit site-selectivity, the fluorescence spectra depend on the excitation wavelength employed to take the measurement. This work explores different conclusions that predictive models reach after inputting such varied spectra. Here, temperature-dependent site-selective spectroscopy is carried out on an ultra-pure Yb, Al co-doped silica rod fabricated by the modified chemical vapor deposition technique. The results are discussed in the context of characterizing ytterbium doped silica for optical refrigeration. Measurements made between 80 K and 280 K at several different excitation wavelengths yield unique values and temperature dependencies of the mean fluorescence wavelength. For the excitation wavelengths studied here, the variation in emission lineshapes ultimately lead to calculated minimum achievable temperatures (MAT) ranging between 151 K and 169 K, with theoretical optimal pumping wavelengths between 1030 nm and 1037 nm. Direct evaluation of the temperature dependence of the fluorescence spectra band area associated with radiative transitions out of the thermally populated 2F5/2 sublevel may be a better approach to identifying the MAT of a glass where site-selective behavior precludes unique conclusions.

3.
Opt Express ; 31(2): 3122-3133, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785310

RESUMO

We report on the optical refrigeration of ytterbium doped silica glass by >40 K starting at room temperature, which represents more than a two-fold improvement over the previous state-of-the-art. A spectroscopic investigation of the steady-state and time-dependent fluorescence was carried out over the temperature range 80 K to 400 K. The calculated minimum achievable temperature for our Yb3+ doped silica sample is ≈150 K, implying the potential for utilizing ytterbium doped silica for solid-state optical refrigeration below temperatures commonly achieved by standard Peltier devices.

4.
Opt Express ; 30(23): 42470-42479, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366700

RESUMO

We develop, analyze, and demonstrate an optically-pumped semiconductor disk laser using an active mirror architecture formed by sandwiching the semiconductor gain membrane between two heatspreaders, one of which is coated with a high-reflectivity multilayer. Thermal modeling indicates that this structure outperforms traditional VECSELs. Employing an InGaAs/GaAs MQW gain structure, we demonstrate output powers of approximately 30 W at a center wavelength of λ ≈ 1178 nm in a TEM00 mode using an in-well pumped geometry.

5.
Opt Lett ; 47(18): 4720-4723, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107078

RESUMO

A modified all-solid-state optical cryocooler prototype based on anti-Stokes fluorescence in a 10%-doped Yb:YLF crystal cooled a payload to temperatures below 125 K starting from room temperature. To achieve this record performance, the optical refrigerator employed a novel, to the best of our knowledge, textured-MgF2 thermal link to improve the thermal transport and fluorescence escape. Additionally, it used spectrally selective, high-reflection coatings in the pump circulator cavity to suppress parasitic lasing and amplified spontaneous emission.

6.
Opt Lett ; 47(14): 3608-3611, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838742

RESUMO

A detailed investigation into the wavelength-dependent cooling efficiencies of two ultra-pure large core diameter ytterbium-doped silica fibers is carried out by means of the laser-induced thermal modulation spectroscopy (LITMoS) method. From these measurements, an external quantum efficiency of 0.99 is obtained for both fibers. Optimal cooling is seen for pump wavelengths between 1032 and 1035 nm. The crossover wavelength from heating to cooling is identified to be between 1018 and 1021 nm. The fiber with higher Yb3+ ion density exhibits better cooling, seen by the input power normalized temperature differential.

7.
Opt Lett ; 46(6): 1421-1424, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720202

RESUMO

Knowledge of saturation intensity of gain or absorption plays a fundamental role in a variety of applications ranging from lasers to many nonlinear optical processes. Here, we present an analytical expression for open-aperture Z-scan transmission for accurately measuring the saturation intensity in the low absorbance samples but at arbitrary pump intensities. We exploit this formalism to investigate the absorption saturation of LiYF4:Yb3+ (YLF:Yb) in the anti-Stokes excitation region for optical refrigeration at high pump intensities. An absorption saturation intensity of 14.5±1kW/cm2 was measured in YLF:Yb at 1020 nm (E||c) at room temperature.

8.
Opt Lett ; 46(22): 5707-5710, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780442

RESUMO

An ytterbium doped silica optical fiber with a core diameter of 900µm has been cooled by 18.4 K below ambient temperature by pumping with 20 W of 1035 nm light in vacuum. In air, cooling by 3.6 K below ambient was observed with the same 20 W pump. The temperatures were measured with a thermal imaging camera and differential luminescence thermometry. The cooling efficiency is calculated to be 1.2±0.1%. The core of the fiber was codoped with Al3+ for an Al to Yb ratio of 6:1, to allow for a larger Yb concentration and enhanced laser cooling.

9.
Opt Express ; 27(20): 27882-27890, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684549

RESUMO

We propose and analyze an active mirror structure that uses a subwavelength grating reflector combined with optical gain. The structure is designed to be directly bonded to a thermal substrate (such as diamond) for efficient heat removal. We present optical wave propagation and thermal transport analysis and show that such a structure is well suited for power scaling of optically pumped semiconductor disk lasers to multi-kilowatt CW power operation.

10.
Opt Express ; 27(2): 1392-1400, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696205

RESUMO

A radiation-balanced Yb:YAG disk laser is demonstrated in an intracavity pumping geometry. Detailed analysis of the data reveals the feasibility of using the multi-kilowatt level "athermal" disk lasers with minimal modal instabilities, which arise from thermal lensing.

11.
Opt Express ; 27(21): 29710-29718, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684228

RESUMO

Optical cooling of a YLF:Yb single crystal to 87 K, well below the minimum achievable temperature predicted from existing theory, has been observed. This discrepancy between theory and data has motivated us to revisit the current model of optical refrigeration, in particular the critical role of parasitic background absorption. Challenging experiments that measured the cooling efficiency as a function of temperature reveal that the background absorption coefficient decreases with temperature, resulting in a significant enhancement of the cooling efficiency at cryogenic temperatures. These discoveries emphasize the high sensitivity of optical cooling to impurity-mediated processes and show the necessity of formulating a cooling model that includes the temperature dependence of the background absorption. To properly characterize the cooling properties of any sample, it is necessary to measure its low-temperature performance.

12.
Opt Lett ; 44(6): 1419-1422, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874668

RESUMO

We report the complete characterization of various cooling-grade Tm-doped crystals including, to the best of our knowledge, the first demonstration of optical refrigeration in Tm:YLF crystals. Room temperature laser cooling efficiencies of 1% and 2% (mol) Tm:YLF and 1% Tm:BYF crystals at different excitation polarizations are measured, and their external quantum efficiency and background absorption are extracted. By performing detailed low-temperature spectroscopic analysis of the samples, global minimum achievable temperatures of 160 to 110 K are estimated. The potential of Tm-doped crystals to realize mid-IR optical cryocoolers and radiation balanced lasers (RBLs) in the eye-safe region of the spectrum is discussed, and a promising two-tone RBL in a tandem structure of Tm:YLF and Ho:YLF crystals is proposed.

13.
Opt Express ; 26(3): 3577-3578, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401885

RESUMO

The editors introduce the feature issue on "Nonlinear Optics 2017," based on the topics presented at the NLO 2017 conference, which was held in Waikoloa, Hawaii, USA from July 17-21, 2017. This feature issue is jointly published by Optics Express and Optical Materials Express.

14.
Rep Prog Phys ; 79(9): 096401, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27484295

RESUMO

This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators.

15.
Opt Express ; 23(25): 32548-54, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26699044

RESUMO

Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures.

16.
Opt Express ; 23(26): 33164-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831984

RESUMO

We report high power distributed Bragg reflector (DBR)-free semiconductor disk lasers. With active regions lifted off and bonded to various transparent heatspreaders, the high thermal impedance and narrow bandwidth of DBRs are mitigated. For a strained InGaAs multi-quantum-well sample bonded to a single-crystalline chemical-vapor deposited diamond, a maximum CW output power of 2.5 W and a record 78 nm tuning range centered at λ≈1160 nm was achieved. Laser operation using a total internal reflection geometry is also demonstrated. Furthermore, analysis for power scaling, based on thermal management, is presented.

17.
Opt Express ; 23(9): 11436-43, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969238

RESUMO

We report a robust method of coherent detection of broadband THz pulses using terahertz induced second-harmonic (TISH) generation in a laser induced air plasma together with a controlled second harmonic optical bias. We discuss a role of the bias field and its phase in the process of coherent detection. Phase-matching considerations subject to plasma dispersion are also examined.

18.
Opt Express ; 22(7): 7756-64, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718151

RESUMO

Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.

19.
Opt Express ; 22(13): 16232-40, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977874

RESUMO

A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

20.
Opt Express ; 21(23): 28801-8, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514392

RESUMO

We present analytical considerations of "self-mode-locked" operation in a typical vertical external-cavity surface-emitting laser (VECSEL) cavity geometry by means of Kerr lens action in the semiconductor gain chip. We predict Kerr-lens mode-locked operation for both soft- and hard-apertures placed at the optimal intra-cavity positions. These predictions are experimentally verified in a Kerr-lens mode-locked VECSEL capable of producing pulse durations of below 500 fs at 1 GHz repetition rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA