Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Dokl Biol Sci ; 513(Suppl 1): S45-S50, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38472686

RESUMO

Delivery of ribonucleoprotein complexes of Cas9 nuclease and guide RNA into target cells with virus-like particles (VLP) is one of the novel methods of genome editing and is suitable for gene therapy of human diseases in the future. The efficiency of genome editing with VLPs depends on the Cas9 packaging into VLPs, the process mediated by the viral Gag protein. To improve the packaging of Cas9 into NanoMEDIC VLPs, plasmid constructs for Cas9 and Gag expression were modified by adding the HIV Rev response element (RRE), which was expected to increase the nuclear export of RRE-containing transcripts into the cytosol via the Rev accessory protein, as described for a Vpr-Cas9-based VLP system. The Cas9 and Gag protein levels in cell lysates were found to increase upon cotransfection with either the Rev-expressing plasmid or the empty control plasmid. The effect was independent of the presence of RRE in the transcript. Moreover, AP21967-induced dimerization of FRB and FKBP12, but not plasmid modification with RRE and/or cotransfection with the Rev-expressing plasmid, was shown to play the major role in Cas9 packaging into NanoMEDIC VLPs. The data indicated that it is impractical to use the RRE-Rev module to enhance the packaging of Cas9 nuclease into VLPs.


Assuntos
HIV-1 , Humanos , HIV-1/genética , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Produtos do Gene gag/genética , Elementos de Resposta
2.
Dokl Biol Sci ; 513(Suppl 1): S28-S32, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38190037

RESUMO

Gene editing using the CRISPR/Cas9 system provides new opportunities to treat human diseases. Approaches aimed at increasing the efficiency of genome editing are therefore important to develop. To increase the level of editing of the CXCR4 locus, which is a target for gene therapy of HIV infection, the Cas9 protein was modified by introducing additional NLS signals and ribonucleoprotein complexes of Cas9 and guide RNA were stabilized with poly-L-glutamic acid. The approach allowed a 1.8-fold increase in the level of CXCR4 knockout in the CEM/R5 T cell line and a 2-fold increase in the level of knock-in of the HIV-1 fusion peptide inhibitor MT-C34 in primary CD4+ T lymphocytes.


Assuntos
Sistemas CRISPR-Cas , Infecções por HIV , Humanos , Sistemas CRISPR-Cas/genética , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Ribonucleoproteínas/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
3.
Mol Biol (Mosk) ; 55(4): 606-616, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34432778

RESUMO

Tumor-specific promoters and cis-regulatory genetic elements are used for transcriptional control of therapeutic transgene expression in cancer gene therapy. HRE (hypoxia response element) and ARE (anti-oxidant response elements) cis-regulatory elements are targets for HIF1 and Nrf2 transcriptional factors, respectively, and mediate activation of gene transcription in a response to hypoxia and oxidative stress, characteristic of most solid tumors. Due to these features HREs and AREs are used in genetic constructs for cancer gene therapy to provide tumor-specific therapeutic transgene expression or replication of oncolytic adenovi-ruses. In this work on the basis of the tumor-specific promoter hTERT we have constructed hybrid promoters carrying combinations of HRE and ARE. We showed that upon imitation of hypoxia in human lung cancer cell lines the activity of the hybrid promoter HRE-ARE-hTERT is substantially higher compared to promoters carrying only ARE or HRE. Using in vitro suicide cancer gene therapy with the CD: UPRT/5-FC (cytosine deaminase; uracil phosphoribosyl transferase/5-fluorocytosine) enzyme-prodrug system as a model we showed an enhancement of the cytotoxic effect on human lung cancer cells upon imitation of hypoxia when cytosine deaminase: uracil phosphoribosyl transferase was expressed under the control of the HRE-ARE-hTERT promoter compared to HRE-hTERT and ARE-hTERT promoters. The novel hybrid promoter HRE-ARE-hTERT could be used for transcriptional targeting of therapeutic transgene expression or oncolytic adenovirus replication upon development of novel anti-cancer gene therapeutics.


Assuntos
Neoplasias Pulmonares , Telomerase , Adenoviridae , Carcinógenos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Telomerase/genética , Replicação Viral
4.
Mol Biol (Mosk) ; 53(3): 411-420, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31184606

RESUMO

Antithrombin III (AT3) belongs to the superfamily of serine protease inhibitors (serpins) and is a major anticoagulant in physiological conditions. Based on SERPINC1 gene, a minigene coding for human AT3, which is valuable for medicine and biotechnology, was constructed by minimizing the size of lengthy introns and preserving the splicing site-flanking sequences. An analysis of the minigene splicing pattern identified one correct AT3 transcript and two alternatively spliced transcripts, which formed either due to minigene exons 2 and 3 skipping or an aberrant exon insertion via splicing at cryptic splicing sites in intron 1 of the minigene. Site-directed mutagenesis of the cryptic splicing sites successfully optimized the splicing pattern of the AT3 minigene to completely prevent the generation of the alternative transcripts. The presence of the cryptic splicing sites in intron 1 of the minigene was confirmed with Human Splicing Finder v. 3.1 software, thus demonstrating that putative alternative splicing sites are possible to identify in minimized or hybrid introns of minigenes and to eliminate via mutagenesis before experimentally testing the minigene splicing patterns. The approach to the design of minigenes together with the bioinformatical analysis of the nucleotide sequences of minigene introns can be used to construct minigenes in order to generate transgenic animals producing economically valuable proteins in the milk.


Assuntos
Processamento Alternativo/genética , Antitrombina III/genética , Sítios de Splice de RNA/genética , Éxons/genética , Humanos , Íntrons/genética
5.
Dokl Biochem Biophys ; 485(1): 150-152, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31201638

RESUMO

A hybrid 6XRE-hTERT promoter consisting of the hTERT tumor-specific promoter and six copies of the XRE element from the CYP1A1 human gene promoter was created. Using a human lung cancer cells as a model, we showed that XRE elements in the hybrid promoter greatly increase the activity of the hTERT promoter and ensure the reporter gene transcriptional activation in response to the treatment of the cells with the AhR ligand benzo(a)pyrene. However, similar effects were also observed in normal human bronchial epithelial cells HBEpC, which indicates the loss of the tumor-specific activity by the 6XRE-hTERT hybrid promoter. XRE elements can be used for nonspecific transcription enhancement but are unsuitable for the creation of tumor-specific promoters with enhanced activity.


Assuntos
Citocromo P-450 CYP1A1 , Elementos de Resposta , Telomerase , Ativação Transcricional/efeitos dos fármacos , Células A549 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzo(a)pireno/toxicidade , Brônquios/metabolismo , Brônquios/patologia , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Telomerase/biossíntese , Telomerase/genética
6.
Mol Biol (Mosk) ; 52(4): 692-698, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30113035

RESUMO

Atypical RhoV GTPase (Chp/Wrch-2) is a member of the human Rho GTPase family, which belongs to the superfamily of Ras-related small GTPases. The biological functions of RhoV, regulation of its activity, and mechanisms of its action remain largely unexplored. Rho GTPases regulate a wide range of cellular processes by interacting with protein targets called effectors. Several putative RhoV effectors have been identified, including protein kinases of the Pak (p21-activated kinase) family: Pak1, Pak2, Pak4, and Pak6. RhoV GTPase activates Pak1 protein kinase and simultaneously induces its ubiquitin-dependent degradation. Pak1 regulates E-cadherin localization at adherens junctions downstream of RhoV during gastrulation in fish. The effector domain of RhoV mediates its binding to the CRIB (Cdc42/Rac1 interactive binding) motif in the N-terminal p21-binding domain (PBD) of Pak6 protein kinase. The role of the RhoV effector domain in mediating interaction with Pak1 has not been studied. This study has identified mutations in the effector domain of RhoV GTPase (Y60K, T63A, L65A, and D66A) that impair its interaction with Pak1 in the GST-PAK-PBD pull-down assay and coimmunoprecipitation. Our results suggest that the effector domain of RhoV mediates its binding to Pak1, complementing the current view of the molecular basics of RhoV binding to effectors of the Pak family. These data lay the basis for further studies on the role of Pak1 in RhoV-activated signaling pathways and cellular processes.


Assuntos
GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Neoplasias/genética , Ligação Proteica/genética , Quinases Ativadas por p21/genética , GTP Fosfo-Hidrolases/química , Proteínas de Ligação ao GTP/química , Expressão Gênica/genética , Células HEK293 , Humanos , Imunoprecipitação , Mutação , Proteínas de Neoplasias/química , Plasmídeos/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Transdução de Sinais/genética , Quinases Ativadas por p21/química
7.
Mol Biol (Mosk) ; 52(3): 501-507, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29989582

RESUMO

The presence of introns is often required for efficient transgene expression. The use of full-length genes for transgenesis is associated with technical difficulties due to the large size of the genetic construct. To solve this problem, we recently suggested a universal design of small artificial introns that ensures efficient splicing. However, the insertion of more than one intron into cDNA might result in the aberrant splicing of the minigene with exon skipping. Here, we showed that the insertion of two artificial introns of universal design into cDNA resulted in a splicing pattern that corresponds to the excision of each intron with an exon between them remaining in the transcript. No transcript formation with exon skipping was detected. Therefore, the developed design of small artificial introns assures splicing solely between the donor and the acceptor splice sites of each single intron and results in the generation of a correct transcript from minigene pre-mRNA. These findings enable the construction of minigenes for transgenesis with more than one artificial intron, with no additional cis-elements required to prevent aberrant splicing.


Assuntos
DNA Complementar , Éxons , Íntrons , Splicing de RNA , Transgenes , DNA Complementar/biossíntese , DNA Complementar/genética , Células HEK293 , Humanos
8.
Mol Biol (Mosk) ; 50(2): 327-35, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27239854

RESUMO

The use of tumor-specific microRNA loss to inhibit transgene expression in normal cells is considered as a way to increase the specificity of gene-therapeutic antitumor drugs. This method assumes the introduction of recognition sites of suppressed in tumor cells microRNAs into transgene transcipt. In the presented work, the efficiency of the strategy for providing the tumor specificity of transgene expression depending on parameters of microRNA expression in normal and tumor cells was studied. It was established that microRNA suppression in tumor cells and the determination of absolute microRNA levels in tumor and normal cells are not sufficient for the adequate estimation of the possibility of specific microRNA usage in the scheme of cancer gene therapy, and particularly do not allow to exclude a significant decrease in the efficiency of the gene-therapeutic drug upon the introduction of microRNA recognition sites. These parameters are only suitable for the preliminary selection of microRNA. The effect of introduction of microRNA recognition sites on transgene expression level in target tumor cells should be validated experimentally. It is suggested that this should be done directly in the cancer gene therapy scheme with monitoring of the therapeutic transgene activity.


Assuntos
Terapia Genética , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Adenoviridae/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Humanos , Neoplasias/patologia , Transgenes/genética
9.
Biochim Biophys Acta ; 1839(1): 43-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24334141

RESUMO

Programmed cell death 4 (Pdcd4) tumor suppressor is frequently lost in tumors of various origins including lung cancer, and its loss contributes to tumor progression. However molecular mechanisms underlying Pdcd4 suppression in lung cancer cells remain largely unexplored. Here we investigated molecular mechanisms of Pdcd4 suppression in lung cancer cells. Besides enhanced mTOR-dependent proteasomal degradation of Pdcd4 protein, we found that Pdcd4 transcription is negatively regulated by mTOR signaling, and localized cis-acting element in Pdcd4 promoter responsible for this effect. In conclusion, we described a novel molecular mechanism of Pdcd4 suppression in cancer cells consisting from mTOR signaling-dependent transcriptional repression of Pdcd4.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/genética , Transcrição Gênica , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Citoplasma/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Biochemistry (Mosc) ; 77(1): 26-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22339630

RESUMO

Chp/RhoV is an atypical Rho GTPase whose functions are far from being fully understood. To date several effector proteins of Chp have been identified, including p21-activated kinases Pak1, Pak2, and Pak4. Using a yeast two-hybrid system and co-immunoprecipitation, here we show that another p21-activated kinase, Pak6, is a novel Chp-binding protein. Interaction between Chp and Pak6 depends on the activation state of the GTPase, suggesting that Pak6 is an effector protein for Chp. Point mutations in the effector domain of Chp or in the CRIB motif of Pak6 significantly impair the interaction between Chp and Pak6 upon co-immunoprecipitation, suggesting that the binding interface involves the effector domain of Chp and the CRIB motif in Pak6. We found that Chp does not affect the phosphorylation status of the S560 residue in the catalytic domain of Pak6 when Chp and Pak6 are co-expressed in HEK293 cells. Therefore, similarly to Cdc42, Chp is not likely to activate Pak6. In NCI-H1299 cells, Chp co-localizes with Pak6 on vesicular structures in activation state-dependent manner. Taking the data together, we report here the identification of p21-activated kinase Pak6 as a novel effector of the atypical Rho GTPase Chp. Our data suggest further directions in elucidating biological functions of these proteins.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Quinases Ativadas por p21/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Proteínas de Neoplasias/genética , Fosforilação , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis/crescimento & desenvolvimento
11.
Vopr Onkol ; 58(4): 486-92, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23607202

RESUMO

Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma de Células Escamosas/imunologia , Transformação Celular Neoplásica , Neoplasias Laríngeas/imunologia , Leucoplasia Oral/imunologia , Mucosa Bucal/imunologia , Neoplasias Bucais/imunologia , Lesões Pré-Cancerosas/imunologia , Neoplasias Testiculares/imunologia , Testículo/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Glote , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Valor Preditivo dos Testes , Prognóstico , Neoplasias da Língua/imunologia
12.
Mol Gen Mikrobiol Virusol ; (2): 3-11, 2010.
Artigo em Russo | MEDLINE | ID: mdl-20545042

RESUMO

Inactivation of tumor suppressors and activation of protooncogenes are critical events in malignant cell transformation and tumor progression. Pdcd4 encodes a protein with tumor suppressor functions, which accounts for an increased interest to Pdcd4 as a potential diagnostic and prognostic marker, as well as a target for antineoplastic therapy. This review summarizes well-known properties and functions of Pdcd4 tumor suppressor and mechanisms of its regulation in tumor cells. It is also focused to the role of Pdcd4 in cellular transformation and tumor progression, as well as on its potential practical application in oncology.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Biomarcadores Tumorais/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
13.
Acta Naturae ; 10(3): 40-47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30397525

RESUMO

The use of transgenic animals as bioreactors for the synthesis of the recombinant proteins secreted into milk is a current trend in the development of biotechnologies. Advances in genetic engineering, in particular the emergence of targeted genome editing technologies, have provided new opportunities and significantly improved efficiency in the generation of animals that produce recombinant proteins in milk, including economically important animals. Here, we present a retrospective review of technologies for generating transgenic animals, with emphasis on the creation of animals that produce recombinant proteins in milk. The current state and prospects for the development of this area of biotechnology are discussed in relation to the emergence of novel genome editing technologies. Experimental and practical techniques are briefly discussed.

14.
Mol Gen Mikrobiol Virusol ; (2): 13-8, 2007.
Artigo em Russo | MEDLINE | ID: mdl-17598452

RESUMO

Changes in WIFI expression, an extracellular inhibitor of Wnt pathway, in non-small cell lung carcinomas were analyzed. Frequent (67% cases) suppression of WIFI transcript in non-small cell lung carcinomas were found. Our results, together with previously published data, suggest that inhibition of WIFI expression often occurs in squamous cell carcinomas and is less typical of adenocarcinomas. It was also found that a decrease in the WIFI transcript in tumors is parallel to concomitant suppression of the WIFI protein level. Our results provide further evidence that the WIFI suppression is a frequent event in the lung carcinogenesis, which might lead to disregulation of Wnt signaling pathway and contribute to tumor progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Proteínas Repressoras/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação para Baixo , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Proteínas Repressoras/genética , Transdução de Sinais , Proteínas Wnt/metabolismo
15.
Acta Naturae ; 9(4): 66-73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29340219

RESUMO

describe a novel hybrid tumor-specific promoter, ARE-hTERT, composed of the human TERT gene promoter (hTERT) and the antioxidant response element (ARE) from the human GCLM gene promoter. The hybrid promoter retains the tumor specificity of the basal hTERT promoter but is characterized by an enhanced transcriptional activity in cancer cells with abnormal activation of the Nrf2 transcription factor and upon induction of oxidative stress. In the in vitro enzyme-prodrug cancer gene therapy scheme, ARE-hTERT promoter-driven expression of CD : UPRT (yeast cytosine deaminase : uracil phosphoribosyltransferase) chimeric protein induced a more pronounced death of cancer cells either upon treatment with 5-fluorouracil (5FC) alone or when 5FC was combined with chemotherapeutic drugs as compared to the hTERT promoter. The developed hybrid promoter can be considered a better alternative to the hTERT promoter in cancer gene therapy schemes.

16.
Mol Gen Mikrobiol Virusol ; (4): 3-7, 2006.
Artigo em Russo | MEDLINE | ID: mdl-17094650

RESUMO

Changes in the intracellular signaling cascades underlay many human pathologies including oncological diseases. Modification of the Wnt-signaling pathway are often associated with development of tumor and may play a significant role in carcinogenesis. This gives rise to a significant interest to studies of regulators and components of the Wnt-signaling pathway and search for approaches to practical implementation of the properties of the regulators. The goal of this work was to review the properties of WIF1 (Wnt inhibitor factor-1), a regulator of Wnt-signaling pathway, as a possible diagnostic and prognostic marker of human tumors, as well as basis for development of novel antitumoral preparations.


Assuntos
Proteínas de Transporte/genética , Neoplasias/genética , Proteínas Repressoras/genética , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Proteínas de Transporte/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Humanos , Proteômica , Proteínas Repressoras/antagonistas & inibidores
17.
Cancer Gene Ther ; 18(9): 682-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21720419

RESUMO

Efficiency and specificity are two key attributes of anti-cancer drugs including genetic therapeutic agents. We suggest a way to improve specificity of gene therapy drugs based on the ability of 3'-untranslated regions (UTR) of some mRNAs selectively stabilize transcripts only during cell division. The mRNAs of genes encoding DNA methyltransferase I (DNMT1) and topoisomerase IIα (TOP2A) are among such transcripts. When inserted into genetic constructs designed to produce therapeutic protein in tumor cells, such 3'-UTR would lead to diminished effect of therapeutic protein on normal cells, which are characterized by low or absent proliferative activity. However, when included in gene expression cassette, these 3'-UTR might result in decreased transgene expression, thus, overweighting the advantage of increased specificity of expression. We showed that DNMT1 and to the lesser extent TOP2A 3'-UTR do not alter significantly therapeutic transgene expression level in tumor cells, thus, confirming the functionality of the proposed approach.


Assuntos
Regiões 3' não Traduzidas/genética , Neoplasias/genética , RNA Mensageiro/genética , Transgenes/genética , Antígenos de Neoplasias/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Terapia Genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA