Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 24(1): 87-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906463

RESUMO

PURPOSE: The growing size of public variant repositories prompted us to test the accuracy of pathogenicity prediction of DNA variants using population data alone. METHODS: Under the a priori assumption that the ratio of the prevalence of variants in healthy population vs that in affected populations form 2 distinct distributions (pathogenic and benign), we used a Bayesian method to assign probability to a variant belonging to either distribution. RESULTS: The approach, termed Bayesian prevalence ratio (BayPR), accurately parsed 300 of 313 expertly curated CFTR variants: 284 of 296 pathogenic/likely pathogenic variants in 1 distribution and 16 of 17 benign/likely benign variants in another. BayPR produced an area under the receiver operating characteristic curve of 0.99 for 103 functionally confirmed missense CFTR variants, which is equal to or exceeds 10 commonly used algorithms (area under the receiver operating characteristic curve range = 0.54-0.99). Application of BayPR to expertly curated variants in 8 genes associated with 7 Mendelian conditions led to the assignment of a disease-causing probability of ≥80% to 1350 of 1374 (98.3%) pathogenic/likely pathogenic variants and of ≤20% to 22 of 23 (95.7%) benign/likely benign variants. CONCLUSION: Irrespective of the variant type or functional effect, the BayPR approach provides probabilities of pathogenicity for DNA variants responsible for Mendelian disorders using only the variant counts in affected and unaffected population samples.


Assuntos
Algoritmos , Mutação de Sentido Incorreto , Teorema de Bayes , Humanos , Curva ROC
2.
Am J Hum Genet ; 102(6): 1062-1077, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805046

RESUMO

Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated <10% wild-type CFTR (WT-CFTR) function, a conservative threshold for the development of life-limiting CF lung disease, and five variants had moderately decreased function (10% to ∼25% WT-CFTR). The remaining three variants in this group unexpectedly had >25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.


Assuntos
Bioensaio/métodos , Regulação da Expressão Gênica , Mutação de Sentido Incorreto/genética , Algoritmos , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Anotação de Sequência Molecular , Proteínas Mutantes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência
3.
Am J Hum Genet ; 96(5): 753-64, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25892112

RESUMO

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.


Assuntos
Variações do Número de Cópias de DNA/genética , Síndrome de DiGeorge/genética , Transportador de Glucose Tipo 3/genética , Cardiopatias Congênitas/genética , Adulto , Aorta Torácica/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Feminino , Genótipo , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
4.
Hum Genet ; 135(3): 273-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26742502

RESUMO

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de DiGeorge/genética , Cardiopatias Congênitas/genética , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Técnicas de Genotipagem , Cardiopatias Congênitas/diagnóstico , Humanos
5.
Genet Med ; 16(9): 657-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24625444

RESUMO

PURPOSE: Chromosomal microarray has been widely adopted as the first-tier clinical test for individuals with multiple congenital anomalies, developmental delay, intellectual disability, and autism spectrum disorders. Although chromosomal microarray has been extensively shown to provide a higher diagnostic yield than conventional cytogenetic methods, some health insurers refuse to provide coverage for this test, claiming that it is experimental and does not affect patients' clinical management. METHODS: We retrospectively reviewed the electronic medical records of all patients who had abnormal chromosomal microarray findings reported by our laboratory over a 3-year period and quantified the management recommendations made in response to these results. RESULTS: Abnormal chromosomal microarray findings were reported for 12.7% of patients (227/1,780). For patients with clinical follow-up notes available, these results had management implications for 54.5% of patients in the entire abnormal cohort (102/187) and for 42.1% of patients referred for isolated neurodevelopmental disorders (16/38). Recommendations included pharmacological treatment, cancer-related screening or exclusion of screening, contraindications, and referrals for further evaluation. CONCLUSION: These results empirically demonstrate the clinical utility of chromosomal microarray by providing evidence that management was directly affected for the majority of patients in our cohort with abnormal chromosomal microarray findings.


Assuntos
Cromossomos Humanos , Gerenciamento Clínico , Testes Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Criança , Pré-Escolar , Detecção Precoce de Câncer , Feminino , Seguimentos , Testes Genéticos/métodos , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Encaminhamento e Consulta , Estudos Retrospectivos
6.
J Cyst Fibros ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734509

RESUMO

BACKGROUND: Cystic fibrosis (CF) is caused by deleterious variants in each CFTR gene. We investigated the utility of whole-gene CFTR sequencing when fewer than two pathogenic or likely pathogenic (P/LP) variants were detected by conventional testing (sequencing of exons and flanking introns) of CFTR. METHODS: Individuals with features of CF and a CF-diagnostic sweat chloride concentration with zero or one P/LP variants identified by conventional testing enrolled in the CF Mutation Analysis Program (MAP) underwent whole-gene CFTR sequencing. Replication was performed on individuals enrolled in the CF Genome Project (CFGP), followed by phenotype review and interrogation of other genes. RESULTS: Whole-gene sequencing identified a second P/LP variant in 20/43 MAP enrollees (47 %) and 10/22 CFGP enrollees (45 %) who had one P/LP variant after conventional testing. No P/LP variants were detected when conventional testing was negative (MAP: n = 43; CFGP: n = 13). Genome-wide analysis was unable to find an alternative etiology in CFGP participants with fewer than two P/LP CFTR variants and CF could not be confirmed in 91 % following phenotype re-review. CONCLUSIONS: Whole-gene CFTR analysis is beneficial in individuals with one previously-identified P/LP variant and a CF-diagnostic sweat chloride. Negative conventional CFTR testing indicates that the phenotype should be re-evaluated.

7.
Am J Hum Genet ; 87(2): 209-18, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20673865

RESUMO

Palindrome-mediated genomic instability has been associated with chromosomal translocations, including the recurrent t(11;22)(q23;q11). We report a syndrome characterized by extremity anomalies, mild dysmorphia, and intellectual impairment caused by 3:1 meiotic segregation of a previously unrecognized recurrent palindrome-mediated rearrangement, the t(8;22)(q24.13;q11.21). There are at least ten prior reports of this translocation, and nearly identical PATRR8 and PATRR22 breakpoints were validated in several of these published cases. PCR analysis of sperm DNA from healthy males indicates that the t(8;22) arises de novo during gametogenesis in some, but not all, individuals. Furthermore, demonstration that de novo PATRR8-to-PATRR11 translocations occur in sperm suggests that palindrome-mediated translocation is a universal mechanism producing chromosomal rearrangements.


Assuntos
Cromossomos Humanos Par 22/genética , Cromossomos Humanos Par 8/genética , Sequências Repetidas Invertidas/genética , Meiose/genética , Não Disjunção Genética , Translocação Genética/genética , Sequência Rica em At/genética , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Quebra Cromossômica , Feminino , Dosagem de Genes/genética , Genótipo , Saúde , Humanos , Masculino , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA , Espermatogênese/genética , Espermatozoides/metabolismo
8.
Am J Med Genet A ; 158A(11): 2781-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23034814

RESUMO

Velo-cardio-facial syndrome/DiGeorge syndrome, also known as 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome, with an estimated incidence of 1/2,000-1/4,000 live births. Approximately 9-11% of patients with this disorder have an overt cleft palate (CP), but the genetic factors responsible for CP in the 22q11DS subset are unknown. The TBX1 gene, a member of the T-box transcription factor gene family, lies within the 22q11.2 region that is hemizygous in patients with 22q11DS. Inactivation of one allele of Tbx1 in the mouse does not result in CP, but inactivation of both alleles does. Based on these data, we hypothesized that DNA variants in the remaining allele of TBX1 may confer risk to CP in patients with 22q11DS. To test the hypothesis, we evaluated TBX1 exon sequencing (n = 360) and genotyping data (n = 737) with respect to presence (n = 54) or absence (n = 683) of CP in patients with 22q11DS. Two upstream SNPs (rs4819835 and rs5748410) showed individual evidence for association but they were not significant after correction for multiple testing. Associations were not identified between DNA variants and haplotypes in 22q11DS patients with CP. Overall, this study indicates that common DNA variants in TBX1 may be nominally causative for CP in patients with 22q11DS. This raises the possibility that genes elsewhere on the remaining allele of 22q11.2 or in the genome could be relevant.


Assuntos
Fissura Palatina/complicações , Fissura Palatina/genética , Síndrome de DiGeorge/complicações , Estudos de Associação Genética , Genótipo , Fenótipo , Proteínas com Domínio T/genética , Sequência de Bases , Fissura Palatina/epidemiologia , Síndrome de DiGeorge/genética , Feminino , Ordem dos Genes , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Prevalência
9.
J Med Genet ; 48(4): 235-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21097845

RESUMO

BACKGROUND: Patients with cystic fibrosis (CF) manifest a multisystem disease due to deleterious mutations in each gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). However, the role of dysfunctional CFTR is uncertain in individuals with mild forms of CF (ie, pancreatic sufficiency) and mutation in only one CFTR gene. METHODS: Eleven pancreatic sufficient (PS) CF patients with only one CFTR mutation identified after mutation screening (three patients), mutation scanning (four patients) or DNA sequencing (four patients) were studied. Bi-directional sequencing of the coding region of CFTR was performed in patients who had mutation screening or scanning. If a second CFTR mutation was not identified, CFTR mRNA transcripts from nasal epithelial cells were analysed to determine if any PS-CF patients harboured a second CFTR mutation that altered RNA expression. RESULTS: Sequencing of the coding regions of CFTR identified a second deleterious mutation in five of the seven patients who previously had mutation screening or mutation scanning. Five of the remaining six patients with only one deleterious mutation identified in the coding region of one CFTR gene had a pathologic reduction in the amount of RNA transcribed from their other CFTR gene (8.4-16% of wild type). CONCLUSIONS: These results show that sequencing of the coding region of CFTR followed by analysis of CFTR transcription could be a useful diagnostic approach to confirm that patients with mild forms of CF harbour deleterious alterations in both CFTR genes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Substituição de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Masculino , Fenótipo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Deleção de Sequência , Transcrição Gênica
10.
Hum Mutat ; 32(11): 1278-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21796729

RESUMO

Haploinsufficiency of TBX1, encoding a T-box transcription factor, is largely responsible for the physical malformations in velo-cardio-facial /DiGeorge/22q11.2 deletion syndrome (22q11DS) patients. Cardiovascular malformations in these patients are highly variable, raising the question as to whether DNA variations in the TBX1 locus on the remaining allele of 22q11.2 could be responsible. To test this, a large sample size is needed. The TBX1 gene was sequenced in 360 consecutive 22q11DS patients. Rare and common variations were identified. We did not detect enrichment in rare SNP (single nucleotide polymorphism) number in those with or without a congenital heart defect. One exception was that there was increased number of very rare SNPs between those with normal heart anatomy compared to those with right-sided aortic arch or persistent truncus arteriosus, suggesting potentially protective roles in the SNPs for these phenotype-enrichment groups. Nine common SNPs (minor allele frequency, MAF > 0.05) were chosen and used to genotype the entire cohort of 1,022 22q11DS subjects. We did not find a correlation between common SNPs or haplotypes and cardiovascular phenotype. This work demonstrates that common DNA variations in TBX1 do not explain variable cardiovascular expression in 22q11DS patients, implicating existence of modifiers in other genes on 22q11.2 or elsewhere in the genome.


Assuntos
Síndrome da Deleção 22q11/genética , Anormalidades Cardiovasculares/genética , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Genótipo , Fenótipo , Proteínas com Domínio T/genética , Variação Genética , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único
11.
Eur J Hum Genet ; 14(5): 567-76, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16493442

RESUMO

Gross genomic rearrangements involving deletions in the CFTR gene have recently been found to account for approximately 20% of unidentified cystic fibrosis (CF) chromosomes in both French and Italian patients. Using QMPSF and walking quantitative DHPLC, six novel mutations (three simple deletions, two complex deletions with short insertions of 3-6 bp, and a complex deletion with a 182 bp inverted downstream sequence) were characterized by screening 274 unidentified CF chromosomes from 10 different countries. These lesions increase the total number of fully characterized large CFTR genomic rearrangements involving deletions to 21. Systematic analysis of the 42 associated breakpoints indicated that all 21 events were caused by nonhomologous recombination. Whole gene complexity analysis revealed a significant correlation between regions of low sequence complexity and the locations of the deletion breakpoints. Known recombination-promoting motifs were noted in the vicinity of the breakpoints. A total of 11 simple deletions were potentially explicable in terms of the classical model of replication slippage. However, the complex deletions appear to have arisen via multiple mechanisms; three of the five complex deletions with short insertions and both examples of large inverted insertions (299 and 182 bp, respectively) can be explained by either a model of serial replication slippage in cis (SRScis) or SRS in trans (SRStrans). Finally, the nature and distribution of large genomic rearrangements in the CFTR gene were compared and contrasted with those of two other genes, DMD and MSH2, with a view to gaining a broader understanding of DNA sequence context in mediating the diverse underlying mutational mechanisms.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Genoma , Sequência de Bases , Biologia Computacional , Análise Mutacional de DNA , Deleção de Genes , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Recombinação Genética
12.
Case Rep Genet ; 2015: 169482, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664771

RESUMO

Two consanguineous Qatari siblings presented for evaluation: a 17-4/12-year-old male with hypogonadotropic hypogonadism, alopecia, intellectual disability, and microcephaly and his 19-year-old sister with primary amenorrhea, alopecia, and normal cognition. Both required hormone treatment to produce secondary sex characteristics and pubertal development beyond Tanner 1. SNP array analysis of both probands was performed to detect shared regions of homozygosity which may harbor homozygous mutations in a gene causing their common features of abnormal pubertal development, alopecia, and variable cognitive delay. Our patients shared multiple homozygous genomic regions; ten shared regions were >1 Mb in length and constituted 0.99% of the genome. DCAF17, encoding a transmembrane nuclear protein of uncertain function, was the only gene identified in a homozygous region known to cause hypogonadotropic hypogonadism. DCAF17 mutations are associated with Woodhouse-Sakati syndrome, a rare disorder characterized by alopecia, hypogonadotropic hypogonadism, sensorineural hearing loss, diabetes mellitus, and extrapyramidal movements. Sequencing of the coding exons and flanking intronic regions of DCAF17 in the proband revealed homozygosity for a previously described founder mutation (c.436delC). Targeted DCAF17 sequencing of his affected sibling revealed the same homozygous mutation. This family illustrates the utility of SNP array testing in consanguineous families to efficiently and inexpensively identify regions of genomic homozygosity in which genetic candidates for recessive conditions can be identified.

13.
Cancer Genet ; 207(4): 133-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24813807

RESUMO

It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22), and t(8;22). To date, all reported PATRR-mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene, whereas the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, we detect de novo translocations similar to the t(11;22) and t(8;22), involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence-based etiologies responsible for chromosome 3p14.2 genomic rearrangements.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 8/genética , Neoplasias Renais/genética , Translocação Genética , Sequência Rica em At/genética , Hidrolases Anidrido Ácido/genética , Animais , Sequência de Bases , Carcinoma de Células Renais/patologia , Linhagem Celular , Pontos de Quebra do Cromossomo , Humanos , Sequências Repetidas Invertidas/genética , Neoplasias Renais/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/genética , Análise de Sequência de DNA
14.
Int J Pediatr Otorhinolaryngol ; 77(1): 123-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121717

RESUMO

OBJECTIVE: Palatal anomalies are one of the identifying features of 22q11.2 deletion syndrome (22q11.2DS) affecting about one third of patients. To identify genetic variants that increase the risk of cleft or palatal anomalies in 22q11.2DS patients, we performed a candidate gene association study in 101 patients with 22q11.2DS genotyped with the Affymetrix genome-wide human SNP array 6.0. METHODS: Patients from Children's Hospital of Philadelphia, USA and Wilhelmina Children's Hospital Utrecht, The Netherlands were stratified based on palatal phenotype (overt cleft, submucosal cleft, bifid uvula). SNPs in 21 candidate genes for cleft palate were analyzed for genotype-phenotype association. In addition, TBX1 sequencing was carried out. Quality control and association analyses were conducted using the software package PLINK. RESULTS: Genotype and phenotype data of 101 unrelated patients (63 non-cleft subjects (62.4%), 38 cleft subjects (37.6%)) were analyzed. A Total of 39 SNPs on 10 genes demonstrated a p-value ≤0.05 prior to correction. The most significant SNPs were found on FGF10. However none of the SNPs remained significant after correcting for multiple testing. CONCLUSIONS: Although these results are promising, analysis of additional samples will be required to confirm that variants in these regions influence risk for cleft palate or palatal anomalies in 22q11.2DS patients.


Assuntos
Anormalidades Múltiplas/diagnóstico , Fissura Palatina/genética , Síndrome de DiGeorge/genética , Estudos de Associação Genética , Predisposição Genética para Doença/epidemiologia , Cromossomos Humanos Par 22 , Fissura Palatina/diagnóstico , Fissura Palatina/epidemiologia , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/epidemiologia , Feminino , Genótipo , Hospitais Pediátricos , Humanos , Recém-Nascido , Masculino , Países Baixos/epidemiologia , Fenótipo , Estudos de Amostragem , Estados Unidos/epidemiologia
15.
J Pediatr ; 146(5): 675-80, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870673

RESUMO

OBJECTIVE: To determine which features of incomplete or "nonclassic" forms of cystic fibrosis (CF) are associated with deleterious CF transmembrane conductance regulator gene ( CFTR ) mutations, and to explore other etiologies for features not associated with deleterious CFTR mutations. STUDY DESIGN: Clinical features were compared between 57 patients with deleterious mutations in each CFTR and 63 with no deleterious mutations. The Shwachman Bodian Diamond syndrome gene ( SBDS ) was sequenced to search for mutations in patients with no deleterious CFTR mutations and steatorrhea to determine if any had unrecognized Shwachman-Diamond syndrome (SDS). RESULTS: The presence of a common CF-causing mutation, absence of the vas deferens, and Pseudomona aeruginosa in the sputum correlated with the presence of two deleterious CFTR mutations, whereas sweat chloride concentration, diagnostic criteria for CF, and steatorrhea did not. However, sweat chloride concentration correlated with CFTR mutation status in patients infected with P aeruginosa. One patient had disease-causing mutations in each SBDS . CONCLUSIONS: Presence of a common CF-causing mutation, absence of the vas deferens and/or P aeruginosa infection in a patient with features of nonclassic CF are predictive of deleterious mutations in each CFTR , whereas steatorrhea in the same context is likely to have etiologies other than CF transmembrane conductance regulator (CFTR) dysfunction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Proteínas/genética , Adulto , Criança , Fibrose Cística/classificação , Fibrose Cística/diagnóstico , Genótipo , Humanos , Modelos Logísticos , Masculino , Mutação , Fenótipo , Esteatorreia/genética
16.
Hum Mol Genet ; 14(22): 3493-8, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16207733

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder of Cl(-) and Na(+) transport. The vast majority of CF patients have deleterious mutations in an epithelial Cl(-) channel called the CF transmembrane conductance regulator (CFTR). In contrast, defects in the epithelial Na(+) channel (SCNN1) have been associated with phenotypes dominated by renal disease (systemic pseudohypoaldosteronism type I and Liddle syndrome). We report two non-classic CF patients without CFTR mutations who have novel deleterious mutations in the beta-subunits of SCNN1 in the absence of overt renal disease.


Assuntos
Fibrose Cística/genética , Canais de Sódio/genética , Adulto , Sequência de Aminoácidos , Animais , Criança , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Sódio/metabolismo , Canais de Sódio/metabolismo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA