Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33741737

RESUMO

Plant pathogens have agricultural impacts on a global scale and resolving the timing and route of their spread can aid crop protection and inform control strategies. However, the evolutionary and phylogeographic history of plant pathogens in Eurasia remains largely unknown because of the difficulties in sampling across such a large landmass. Here, we show that turnip mosaic potyvirus (TuMV), a significant pathogen of brassica crops, spread from west to east across Eurasia from about the 17th century CE. We used a Bayesian phylogenetic approach to analyze 579 whole genome sequences and up to 713 partial sequences of TuMV, including 122 previously unknown genome sequences from isolates that we collected over the past five decades. Our phylogeographic and molecular clock analyses showed that TuMV isolates of the Asian-Brassica/Raphanus (BR) and basal-BR groups and world-Brassica3 (B3) subgroup spread from the center of emergence to the rest of Eurasia in relation to the host plants grown in each country. The migration pathways of TuMV have retraced some of the major historical trade arteries in Eurasia, a network that formed the Silk Road, and the regional variation of the virus is partly characterized by different type patterns of recombinants. Our study presents a complex and detailed picture of the timescale and major transmission routes of an important plant pathogen.


Assuntos
Brassica/virologia , Economia , Genoma Viral , Genômica , Doenças das Plantas/virologia , Potyvirus/fisiologia , Variação Genética , Genômica/métodos , Geografia , Filogenia , Filogeografia , Potyvirus/classificação
2.
Microsc Microanal ; 19 Suppl 5: 29-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920169

RESUMO

As the presence of Sc2O3 and CeO2 is known to largely enhance the ionic conductivity in the temperature range of 600-800°C, compared with the conventional yttria-stabilized ZrO2, Sc2O3&CeO2-stabilized ZrO2 provide its applicability as electrolytes in solid oxide fuel cells. The current study introduces the methodology to synthesize Sc2O3&CeO2-stabilized ZrO2 powders by using co-precipitation technique or high-temperature hydrothermal reaction, and further describes the structural characterization of the zirconia powders synthesized by the above-mentioned two methods. The co-precipitation technique was found to allow obtaining powders of cubic phase, whereas high-temperature hydrothermal synthesis results in the presence of a monoclinic phase as well. The scanning transmission electron microscope observations also confirm that the size of the synthesized ZrO2 powders in this study is found to be much smaller than that of commercially available powders.

3.
Viruses ; 14(6)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35746690

RESUMO

Although wheat streak mosaic virus (WSMV) is a well-known pathogen inducing significant crop losses and endangering wheat production worldwide, the recent discovery of High Plains wheat mosaic virus (HPWMoV) in Ukraine raises questions on the co-existence of these two viruses having a similar host range and the same mite vector. Here we report on the screening of winter wheat industrial plantings in several important regions of Ukraine for WSMV and HPWMoV. WSMV was identified in an extremely high number of symptomatic plants (>85%) as compared to HPWMoV detected in 40% of wheat samples. Importantly, the preferred mode of HPWMoV circulation in Ukraine was mixed infection with WSMV (>30%) as opposed to WSMV, which was typically found in monoinfection (60%). Screening wheat varieties for possible virus resistance indicated that all but one were susceptible to WSMV, whereas over 50% of the same varieties were not naturally infected with HPWMoV. Overall, phylogenetic analysis of the collected WSMV and HPWMoV isolates indicated their high identity and similarity to other known isolates of the respective viruses. Here we first characterize WSMV isolates found in winter wheat plants in mono- or mixed infection with HPWMoV, which was recently reported as a typical wheat pathogen in Ukraine.


Assuntos
Coinfecção , Vírus do Mosaico , Humanos , Filogenia , Doenças das Plantas , Potyviridae , Ucrânia
4.
Pol J Microbiol ; 60(2): 125-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21905629

RESUMO

Wheat dwarf virus (WDV) is the most ubiquitous virus in cereals causing huge losses in both Hungary and Ukraine. The presence of barley-and wheat-adapted strains has been confirmed, suggesting that the barley strain is restricted to barley, while the wheat strain is present in both wheat and barley plants. Five WDV isolates from wheat plants sampled in Hungary and Ukraine were sequenced and compared with known WDV isolates from GenBank. Four WDV isolates belonged to the wheat strain. Our results indicate that WDV-Odessa is an isolate of special interest since it has originated from wheat, but belongs to the barley-adapted strain, providing novel data on WDV biology and raising issues of pathogen epidemiology.


Assuntos
Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral/genética , Hordeum/virologia , Triticum/virologia , Animais , Sequência de Bases , DNA Viral/química , DNA Viral/genética , Geminiviridae/isolamento & purificação , Hemípteros/virologia , Especificidade de Hospedeiro , Hungria , Insetos Vetores/virologia , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Alinhamento de Sequência , Análise de Sequência de DNA , Ucrânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA