Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Appl Toxicol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828519

RESUMO

Bisphenol A (BPA) is widely exposed in populations worldwide and has negative effects on spermatogenesis both in animals and humans. The homeostasis of the actin cytoskeleton in the spermatogenic epithelium is crucial for spermatogenesis. Actin cytoskeleton destruction in the seminiferous epithelium is one of the important reasons for BPA-induced spermatogenesis disorder. However, the underlying molecular mechanisms remain largely unexplored. Herein, we explored the role and mechanism of Rsad2, an interferon-stimulated gene in BPA-induced actin cytoskeleton disorder in mouse GC-2 spermatocyte cell lines. After BPA exposure, the actin cytoskeleton was dramatically disrupted and the cell morphology was markedly altered accompanied by a significant increase in Rsad2 expression both in mRNA and protein levels in GC-2 cells. Furthermore, the phalloidin intensities and cell morphology were restored obviously when interfering with the expression of Rsad2 in BPA-treated GC-2 cells. In addition, we observed a significant decrease in intracellular ATP levels after BPA treatment, while the ATP level was obviously upregulated when knocking down the expression of Rsad2 in BPA-treated cells compared to cells treated with BPA alone. Moreover, Rsad2 relocated to mitochondria after BPA exposure in GC-2 cells. BPA promoted Rsad2 expression by activating type I IFN-signaling in GC-2 cells. In summary, Rsad2 mediated BPA-induced actin cytoskeletal disruption in GC-2 cells, which provided data to reveal the mechanism of BPA-induced male reproductive toxicity.

2.
Zhongguo Zhong Yao Za Zhi ; 44(4): 723-729, 2019 Feb.
Artigo em Zh | MEDLINE | ID: mdl-30989885

RESUMO

To study the chemical constituents from the rhizome of Menispermum dauricum,fifteen compounds,N-methylcorydaldine( 1),thalifoline( 2),stepholidine( 3),acutumine( 4),daurisoline( 5),acutumidine( 6),dauricicoline( 7),bianfugecine( 8),6-O-demethylmenisporphine( 9),bianfugedine( 10),dauricoside( 11),eleutheroside D( 12),aristolactone( 13),aristoloterpenateⅠ( 14) and aristolochic acid( 15) were isolated from 75% ethanol extract of Menispermi Rhizoma by using thin layer chromatography and column chromatography methods. Their structures were identified based on their physicochemical properties and spectral data. Among them,compounds 12-15 were obtained from the genus Menispermum for the first time. Six alkaloids with higher contents were subjected to evaluate the anti-hypoxic activities by using MTT method. As a result,six alkaloids exhibited significant anti-hypoxia activities.


Assuntos
Menispermum , Alcaloides , Humanos , Hipóxia , Extratos Vegetais , Rizoma
3.
Food Chem Toxicol ; 179: 113941, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473983

RESUMO

This study aims to explore the male reproductive toxicity of Benzo[b]fluoranthene (BbF) and related mechanisms. The results of computational toxicology analysis indicated male reproductive toxicity of BbF was related to apoptosis of Leydig cells and that Akt/p53 pathway might play a key role. In experiments, BbF induced testosterone decline, decreased concentration and motility of sperm and aggravated testicular pathological injury in mice. Besides, BbF led to apoptosis in Leydig cells, and decreased expressions of p-Akt and Bcl2, while improving the expressions of p53, Bax and Cleaved Caspase-3 in vivo and in vitro. Further, compared with BbF group, Akt activator SC79 significantly reduced cell apoptosis rate, improved cell viability, promoted the expressions of p-Akt and p-Mdm2, and reversed the above molecular expressions. Similarly, p53 inhibitor Pifithrin-α also significantly enhanced the cell vitality, alleviated the apoptosis of TM3 cells induced by BbF, and decreased the expressions of Bax and Cleaved Caspase-3, with the up-regulation of Bcl2. To sum up, by inhibiting Akt-Mdm2 signaling, BbF activated the p53-mediated mitochondrial apoptosis pathway, further inducing the apoptosis of Leydig cells, therefore resulting in testosterone decline and male reproductive damage. Besides, this study provided a valid mode integrating computational toxicology and experimental approaches in toxicity testing.


Assuntos
Células Intersticiais do Testículo , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Células Intersticiais do Testículo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Sêmen/metabolismo , Testosterona/metabolismo , Apoptose
4.
Front Mol Neurosci ; 15: 1023692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385766

RESUMO

Background: Spinal cord injury (SCI) is a severe disease with motor and sensory function being destroyed, which leads to a poor prognosis and a serious financial burden. It is urgent to figure out the molecular and pathological mechanisms of SCI to develop feasible therapeutic strategies. This article aims to review documents focused on gene expression in SCI and summarize research hotspots and the development process in this field. Methods: Publications of SCI-related studies from 2000 to 2022 were retrieved from the Web of Science Core Collection database. Biblioshiny was used to evaluate the research performance, core authors, journals and contributed countries, together with trend topics, hotspots in the field, and keyword co-occurrence analysis. Visualized images were obtained to help comprehension. Results: Among 351 documents, it was found that the number of annual publications increased in general. The most productive country was China, followed by the United States with the highest influence and the most international cooperation. Plos One was the journal of the maximum publications, while Journal of Neuroscience was the most influential one. According to keyword co-occurrence and trend topics analysis, these articles mainly focused on molecular and pathological mechanisms as well as novel therapies for SCI. Neuropathic pain, axonal regeneration and messenger RNA are significant and promising research areas. Conclusion: As the first bibliometric study focused on gene expression in SCI, we demonstrated the evolution of the field and provided future research directions like mechanisms and treatments of SCI with great innovativeness and clinical value. Further studies are recommended to develop more viable therapeutic methods for SCI.

5.
Rev Sci Instrum ; 92(3): 033308, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820000

RESUMO

With the development of the precise radiotherapy, the accuracy of radiotherapy equipment is gradually improved. The gantry, the carrier of the treatment head and various testing devices, is the most important component that determines the accuracy of the entire equipment. In this paper, the layout of the O-ring linear accelerator and the structure of the gantry are optimized to reduce the weight of the gantry by 50% and the moment of inertia by 60%. A mechanical isocenter detection method based on the laser tracker is proposed to conduct a rapid and accurate isocenter measurement for the optimized gantry. The experimental results show that the maximum deformation of the optimized gantry under load is 0.13 mm during rotation and the maximum intersection distance between the gantry axis and the treatment head axis at the isocenter position is 0.21 mm.

6.
Oxid Med Cell Longev ; 2020: 6837982, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318240

RESUMO

As a pair of differential isomers, Kaji-ichigoside F1 and Rosamultin are both pentacyclic triterpenoids isolated from the subterranean root of Potentilla anserina L., a plant used in folk medicine in western China as antihypoxia and anti-inflammatory treatments. We demonstrated that Kaji-ichigoside F1 and Rosamultin effectively prevented hypoxia-induced apoptosis in vascular endothelial cells. We established a hypoxia model, using EA.hy926 cells, to further explore the mechanisms. Hypoxia promoted the phosphorylation of AKT, ERK1/2, and NF-κB. In hypoxic cells treated with Kaji-ichigoside F1, p-ERK1/2 and p-NF-κB levels were increased, while the level of p-AKT was decreased. Treatment with Rosamultin promoted phosphorylation of ERK1/2, NF-κB, and AKT in hypoxic cells. Following the addition of LY294002, the levels of p-AKT, p-ERK1/2, and p-NF-κB decreased significantly. Addition of PD98059 resulted in reduced levels of p-ERK1/2 and p-NF-κB, while p-AKT levels were increased. Pharmacodynamic analysis demonstrated that both LY294002 and PD98059 significantly inhibited the positive effects of Kaji-ichigoside F1 on cell viability during hypoxia, consistent with the results of hematoxylin-eosin (H&E) staining, DAPI staining, and flow cytometry. The antihypoxia effects of Rosamultin were remarkably inhibited by LY294002 but promoted by PD98059. In Kaji-ichigoside F1- and Rosamultin-treated cells, Bcl2 expression was significantly upregulated, while expression of Bax and cytochrome C and levels of cleaved caspase-9 and cleaved caspase-3 were reduced. Corresponding to pharmacodynamic analysis, LY294002 inhibited the regulatory effects of Kaji-ichigoside F1 and Rosamultin on the above molecules, while PD98059 inhibited the regulatory effects of Kaji-ichigoside F1 but enhanced the regulatory effects of Rosamultin. In conclusion, Kaji-ichigoside F1 protected vascular endothelial cells against hypoxia-induced apoptosis by activating the ERK1/2 signaling pathway, which positively regulated the NF-κB signaling pathway and negatively regulated the PI3K/AKT signaling pathway. Rosamultin protected vascular endothelial cells against hypoxia-induced apoptosis by activating the PI3K/AKT signaling pathway and positively regulating ERK1/2 and NF-κB signaling pathways.


Assuntos
Células Endoteliais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Life Sci ; 252: 117666, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298737

RESUMO

AIMS: Euscaphic acid and Tormentic acid are aglycones of Kaji-ichigoside F1 and Rosamultin, respectively. These four compounds are pentacyclic triterpenoid, isolated from the subterranean root of the Potentilla anserina L. Based on the protective roles against hypoxia-induced apoptosis of Euscaphic acid and Tormentic acid in vascular endothelial cells, this study was designed to determine the mechanisms. MAIN METHODS: The model of hypoxic injuries in EA. hy926 cells was established. Through applications of PI3K/AKT inhibitor, LY294002 and ERK1/2 inhibitor, PD98059, we explored the relationships between pharmacodynamic mechanisms and PI3K/AKT or ERK 1/2 signaling pathway. The anti-hypoxic effects were studied by methyl-thiazolyl-tetrazolium (MTT) assay, Hematoxylin-Eosin (HE) staining, DAPI staining, and flow cytometry. The mechanisms of anti-mitochondrial apoptosis were explored by western blot. The expressions of p-ERK 1/2, ERK 1/2, p-AKT, AKT, p-NF-κB, NF-κB, Bcl-2, Bax, Cyt C, cleaved caspase-9 and cleaved caspase-3 were detected. KEY FINDINGS: Euscaphic acid protected vascular endothelial cells against hypoxia-induced apoptosis via ERK1/2 signaling pathway, and Tormentic acid brought its efficacy into full play via PI3K/AKT and ERK1/2 signaling pathways. In addition, PI3K/AKT signaling pathway positively regulated ERK1/2 pathway, and ERK1/2 pathway negatively regulated PI3K/AKT pathway. SIGNIFICANCE: This evidence provides theoretical and experimental basis for the following research on anti-hypoxic drugs of Potentilla anserina L.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Triterpenos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Cromonas/farmacologia , Células Endoteliais/metabolismo , Flavonoides/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Potentilla/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Neurotox Res ; 33(2): 353-361, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28844119

RESUMO

Drug addiction is a chronically relapsing disorder in humans; yet, the underlying mechanism remained unclear. Recent studies suggested that the histidine triad nucleotide binding protein 1 (HINT1) may play significant roles in diverse neuropsychiatric diseases including drug addiction. In our present study, we used different batches of mice to establish the different stages of methamphetamine (METH)-induced conditioned place preference (CPP) to explore the dynamic changes throughout the process of addiction in different brain regions, including prefrontal cortex (PFC), nucleus accumbens (NAc), corpus striatum (CPu), and hippocampus (Hip). We found that in NAc of the METH group mice, the HINT1 expression level initially increased after acquisition phases, and then dropped to the normal level after extinction phase, and again increased after reinstatement phase. However, there was no statistical difference in the HINT1 expression level in other three encephalic regions (PFC, CPu, and Hip). Therefore, the HINT1 protein, particularly in the NAc, plays a vital role in the METH-induced CPP. However, the precise mechanisms will require further investigation.


Assuntos
Hipocampo/efeitos dos fármacos , Metanfetamina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo
9.
Disaster Med Public Health Prep ; 11(6): 660-667, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-26634950

RESUMO

OBJECTIVE: Chitosan (CS) is currently used as a hemostatic agent in emergencies and in military settings. However, its application is limited owing to its poor hydrophilia at neutral pH. Carboxymethyl chitosan (CMCS) is an important, water-soluble derivative of CS. In this study, we prepared CS and CMCS microspheres (CSMs and CMCSMs, respectively) and evaluated their hemostatic effect. METHODS: To prepare the microspheres of various sizes, we used the emulsion cross-linking technique. CMCSMs were also loaded with etamsylate (DIC). Clotting time in vitro and in a hepatic injury model was examined to evaluate the hemostatic effect. RESULTS: CMCSMs swelled more and clotted faster than did CSMs. CMCSMs loaded with DIC had no effect on hemostasis. CONCLUSIONS: Both increasing material hydrophilicity and expanding the contact area promoted clotting, whereas chemical cross-linking hampered it because of decreased swelling. CMCSMs are promising candidates for the production of effective hemostatic agents. (Disaster Med Public Health Preparedness. 2017;11:660-667).


Assuntos
Quitosana/análogos & derivados , Hemostasia/efeitos dos fármacos , Microesferas , Bandagens , Quitosana/administração & dosagem , Quitosana/uso terapêutico , Hemorragia/tratamento farmacológico , Hemostasia/fisiologia , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Humanos
10.
Braz J Microbiol ; 45(4): 1409-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763048

RESUMO

The antibacterial effect of α-terpineol from Cinnamomum longepaniculatum (Gamble) N. Chao leaf essential oils were studied with special reference to the mechanism of inhibiting the standard strain of Escherichia coli (CMCC (B) 44102) growth at ultrastructural level. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) and time-kill curves of α-terpineol were determined; Escherichia coli was treated with α-terpineol and observed under a transmission electron microscope. The MIC and MBC values of α-terpineol were all 0.78 µL/mL, and time-kill curves showed the concentration-dependent. Under the transmission electron microscopy (TEM), Escherichia coli exposed to MIC levels of α-terpineol exhibited decreased cell size and irregular cell shape, cell wall and cell membrane were ruptured, nucleus cytoplasm was reduced and nuclear area gathered aside. Results suggest that α-terpineol has excellent antibacterial activity and could induce morphological changes of Escherichia coli.


Assuntos
Antibacterianos/farmacologia , Cicloexenos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Monoterpenos/farmacologia , Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Parede Celular/ultraestrutura , Cinnamomum/química , Monoterpenos Cicloexânicos , Cicloexenos/isolamento & purificação , Citoplasma/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química
11.
Neuropharmacology ; 67: 144-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23159329

RESUMO

Drugs of abuse modulated learning and memory in humans yet the underlying mechanism remained unclear. The extracellular signal-regulated kinase (ERK) and the transcription factor cAMP response element-binding protein (CREB) were involved in neuroplastic changes associated with learning and memory. In the current study, we used a Morris water maze to examine the effect of methamphetamine (METH) on different processes of spatial memory in mice. We then investigated the status of ERK and CREB in the hippocampus and prefrontal cortex (PFC). We found that 1.0 mg/kg dose of METH facilitated spatial memory consolidation when it was injected immediately after the last learning trial. In contrast, the same dose of METH had no effect on spatial memory retrieval when it was injected 30 min before the test. Furthermore, 1.0 mg/kg dose of METH injected immediately after retrieval had no effect on spatial memory reconsolidation. Activation of both ERK and CREB in the hippocampus was found following memory consolidation but not after retrieval or reconsolidation in METH-treated mouse groups. In contrast, activation of both ERK and CREB in the PFC was found following memory retrieval but not other processes in METH-treated mouse groups. These results suggested that METH facilitated spatial memory consolidation but not retrieval or reconsolidation. Moreover, activation of the ERK and CREB signaling pathway in the hippocampus might be involved in METH-induced spatial memory changes.


Assuntos
Proteína de Ligação a CREB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Metanfetamina/farmacologia , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
12.
Braz. j. microbiol ; 45(4): 1409-1413, Oct.-Dec. 2014. ilus, graf
Artigo em Inglês | LILACS | ID: lil-741294

RESUMO

The antibacterial effect of α-terpineol from Cinnamomum longepaniculatum (Gamble) N. Chao leaf essential oils were studied with special reference to the mechanism of inhibiting the standard strain of Escherichia coli (CMCC (B) 44102) growth at ultrastructural level. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) and time-kill curves of α-terpineol were determined; Escherichia coli was treated with α-terpineol and observed under a transmission electron microscope. The MIC and MBC values of α-terpineol were all 0.78 µL/mL, and time-kill curves showed the concentration-dependent. Under the transmission electron microscopy (TEM), Escherichia coli exposed to MIC levels of α-terpineol exhibited decreased cell size and irregular cell shape, cell wall and cell membrane were ruptured, nucleus cytoplasm was reduced and nuclear area gathered aside. Results suggest that α-terpineol has excellent antibacterial activity and could induce morphological changes of Escherichia coli.


Assuntos
Antibacterianos/farmacologia , Cicloexenos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Monoterpenos/farmacologia , Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Parede Celular/ultraestrutura , Cinnamomum/química , Cicloexenos/isolamento & purificação , Citoplasma/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Viabilidade Microbiana/efeitos dos fármacos , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA