Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
2.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39060175

RESUMO

Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remain elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in ribosomal RNA (rRNA) biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DEAD (Asp-Glu-Ala-Asp) box RNA helicase (DDX21) in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of ribosomal DNA. Using high-throughput screening, we identified the small molecules batefenterol and indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.


Assuntos
Calmodulina , RNA Helicases DEAD-box , Hipocampo , RNA Ribossômico , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Animais , RNA Ribossômico/metabolismo , Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Humanos , Neurônios/metabolismo , Ratos , Nucléolo Celular/metabolismo , Células Cultivadas , Células HEK293 , Camundongos , Cálcio/metabolismo
3.
Microvasc Res ; 138: 104219, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34214572

RESUMO

Dynamin is recognized as a crucial regulator for membrane fission and has three isoforms in mammals. But the expression patterns of dynamin isoforms and their roles in non-neuronal cells are incompletely understood. In this study, the expression profiles of dynamin isoforms and their roles in endocytosis was investigated in brain endothelial cells. We found that Dyn2 was expressed at highest levels, whereas the expression of Dyn1 and Dyn3 were far less than Dyn2. Live-cell imaging was used to investigate the effects of siRNA-mediated knockdown of individual dynamin isoforms on transferrin uptake, and we found that Dyn2, but not Dyn1 or Dyn3, is required for the endocytosis in brain endothelial cells. Results of dextran uptake assay showed that dynamin isoforms are not involved in the clathrin-independent fluid-phase internalization of brain endothelial cells, suggesting the specificity of the role of Dyn2 in clathrin-dependent endocytosis. Immunofluorescence and electron microscopy analysis showed that Dyn2 co-localizes with clathrin and acts at the late stage of vesicle fission in the process of endocytosis. Further results showed that Dyn2 is necessary for the basolateral-to-apical internalization of amyloid-ß into brain endothelial cells. We concluded that Dyn2, but not Dyn1 or Dyn3, mediates the clathrin-dependent endocytosis for amyloid-ß internalization particularly from basolateral to apical side into brain endothelial cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/irrigação sanguínea , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Endocitose , Células Endoteliais/metabolismo , Microvasos/metabolismo , Membrana Celular/ultraestrutura , Polaridade Celular , Células Cultivadas , Vesículas Revestidas por Clatrina/ultraestrutura , Dinamina II/genética , Células Endoteliais/ultraestrutura , Humanos , Fatores de Tempo , Transferrina/metabolismo
4.
FASEB J ; 33(9): 10140-10151, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238017

RESUMO

Exposure to space environment induces alterations in glucose and lipid metabolism that contribute to muscular atrophy, bone loss, and cardiovascular disorders. Intestinal microbiota is also changed, but its impact on spaceflight-related metabolic disorder is not clear. We investigated the relationship between glucose metabolic changes and gut dysbiosis in a hind limb-unloading (HU) mouse model, a well-accepted ground-based spaceflight analog. Impaired body weight gain, glucose intolerance, and peripheral insulin resistance were found in 2-4-wk HU mice. Reduced abundance of gut Bifidobacterium spp. and Akkermansia muciniphila was observed within 3 d of HU. The ground-based control (Ctrl) mice that were cohoused with HU mice showed similar patterns of dysbiosis and metabolic changes. Compared with the Ctrls, higher levels of plasma LPS-binding protein and altered transcription of Tnfa and glucose metabolism-related genes in the liver were observed in HU mice. The supplementation of Bifidobacterium spp. suppressed endotoxemia and liver inflammation and improved glucose tolerance in HU mice. The results indicate a close relationship between dysbiosis and altered glucose metabolism in the HU model and also emphasize the importance of evaluating intestinal microbiota in astronauts and its effect on glucose metabolism.-Wang, Y., Zhao, W., Shi, J., Wang, J., Hao, J., Pang, X., Huang, X., Chen, X., Li, Y., Jin, R., Ge, Q. Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model.


Assuntos
Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Intolerância à Glucose/etiologia , Glucose/metabolismo , Ausência de Peso , Proteínas de Fase Aguda , Akkermansia , Animais , Bifidobacterium/isolamento & purificação , Proteínas de Transporte/sangue , Corticosterona/sangue , Endotoxemia/prevenção & controle , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça , Hepatite/prevenção & controle , Abrigo para Animais , Resistência à Insulina , Fígado/metabolismo , Masculino , Glicoproteínas de Membrana/sangue , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/sangue , Probióticos , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Verrucomicrobia/isolamento & purificação , Ausência de Peso/efeitos adversos
5.
FASEB J ; 31(8): 3695-3709, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28495755

RESUMO

Exposure to microgravity leads to alterations in multiple systems, but microgravity-related changes in the gastrointestinal tract and its clinical significance have not been well studied. We used the hindlimb unloading (HU) mouse model to simulate a microgravity condition and investigated the changes in intestinal microbiota and colonic epithelial cells. Compared with ground-based controls (Ctrls), HU affected fecal microbiota composition with a profile that was characterized by the expansion of Firmicutes and decrease of Bacteroidetes. The colon epithelium of HU mice showed decreased goblet cell numbers, reduced epithelial cell turnover, and decreased expression of genes that are involved in defense and inflammatory responses. As a result, increased susceptibility to dextran sulfate sodium-induced epithelial injury was observed in HU mice. Cohousing of Ctrl mice with HU mice resulted in HU-like epithelial changes in Ctrl mice. Transplantation of feces from Ctrl to HU mice alleviated these epithelial changes in HU mice. Results indicate that HU changes intestinal microbiota, which leads to altered colonic epithelial cell homeostasis, impaired barrier function, and increased susceptibility to colitis. We further demonstrate that alteration in gastrointestinal motility may contribute to HU-associated dysbiosis. These animal results emphasize the necessity of evaluating astronauts' intestinal homeostasis during distant space travel.-Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model.


Assuntos
Bactérias/classificação , Colo/patologia , Mucosa Intestinal/microbiologia , Microbiota/fisiologia , Simulação de Ausência de Peso , Animais , Bactérias/genética , Disbiose , Células Epiteliais/fisiologia , Fezes/química , Feminino , Homeostase , Imunoglobulina A/química , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Distribuição Aleatória
6.
FASEB J ; 29(8): 3263-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25877215

RESUMO

The immune systems can be altered by spaceflight in many aspects, but microgravity-related mucosal immune changes and its clinical significance have not been well studied. The purpose of this study was to investigate whether simulated microgravity influences the intestinal homeostasis and increases the susceptibility to colon inflammation. The hindlimb unloading (HU) mouse model was used to simulate the microgravity condition. Three percent dextran sulfate sodium (DSS) was given to mice to induce colitis. Compared to ground control (Ctrl) mice, the HU ones revealed an impaired intestinal homeostasis and increased susceptibility to DSS-induced colitis. This includes an early-onset, 4-fold expansion of segmented filamentous bacteria (SFB), more than 2-fold decrease in regulatory T (Treg) cell numbers and IL-10 production, ∼2-fold increase in colonic IL-1ß expression, 2-fold increase in circulating neutrophils, and colonic neutrophil infiltration. The application of antibiotics ameliorated the Treg and IL-10 reductions but did not significantly dampen neutrophilia and elevated expression of colonic IL-1ß. These results indicate that the intestinal microflora and innate immune system both respond to simulated microgravity and together, contribute to the proinflammatory shift in the gut microenvironment. The data also emphasize the necessity for evaluating the susceptibility to inflammatory bowel diseases (IBDs) in distant space travels.


Assuntos
Colite/etiologia , Suscetibilidade a Doenças/etiologia , Homeostase/fisiologia , Intestinos/fisiologia , Animais , Colite/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Simulação de Ausência de Peso/métodos
7.
Redox Biol ; 59: 102588, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592568

RESUMO

Escherichia coli (E. coli) is the most common Gram-negative bacterial organism causing neonatal meningitis. The pathogenesis of E. coli meningitis, especially how E. coli escape the host immune defenses, remains to be clarified. Here we show that deletion of bacterial Lpp encoding lipoprotein significantly reduces the pathogenicity of E. coli K1 to induce high-degree of bacteremia necessary for meningitis. The Lpp-deleted E. coli K1 is found to be susceptible to the intracellular bactericidal activity of neutrophils, without affecting the release of neutrophil extracellular traps. The production of reactive oxygen species (ROS), representing the primary antimicrobial mechanism in neutrophils, is significantly increased in response to Lpp-deleted E. coli. We find this enhanced ROS response is associated with the membrane translocation of NADPH oxidase p47phox and p67phox in neutrophils. Then we constructed p47phox knockout mice and we found the incidence of bacteremia and meningitis in neonatal mice induced by Lpp-deleted E. coli is significantly recovered by p47phox knockout. Proteomic profile analysis show that Lpp deficiency induces upregulation of flagellar protein FliC in E. coli. We further demonstrate that FliC is required for the ROS induction in neutrophils by Lpp-deleted E. coli. Taken together, these data uncover the novel role of Lpp in facilitating intracellular survival of E. coli K1 within neutrophils. It can be inferred that Lpp of E. coli K1 is able to suppress FliC expression to restrain the activation of NADPH oxidase in neutrophils resulting in diminished bactericidal activity, thus protecting E. coli K1 from the elimination by neutrophils.


Assuntos
Bacteriemia , Proteínas de Escherichia coli , Camundongos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neutrófilos/metabolismo , Proteômica , NADPH Oxidases/metabolismo , Bacteriemia/metabolismo , Bacteriemia/microbiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
Cell Rep ; 39(2): 110656, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417709

RESUMO

Tight junctions (TJs) of brain microvascular endothelial cells (BMECs) play a pivotal role in maintaining the blood-brain barrier (BBB) integrity; however, precise regulation of TJs stability in response to physiological and pathological stimuli remains elusive. Here, using RNA immunoprecipitation with next-generation sequencing (RIP-seq) and functional characterization, we identify SNHG12, a long non-coding RNA (lncRNA), as being critical for maintaining the BBB integrity by directly interacting with TJ protein occludin. The interaction between SNHG12 and occludin is oxygen adaptive and could block Itch (an E3 ubiquitin ligase)-mediated ubiquitination and degradation of occludin in human BMECs. Genetic ablation of endothelial Snhg12 in mice results in occludin reduction and BBB leakage and significantly aggravates hypoxia-induced BBB disruption. The detrimental effects of hypoxia on BBB could be alleviated by exogenous SNHG12 overexpression in brain endothelium. Together, we identify a direct TJ modulator lncRNA SNHG12 that is critical for the BBB integrity maintenance and oxygen adaption.


Assuntos
Barreira Hematoencefálica , RNA Longo não Codificante , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Camundongos , Ocludina/metabolismo , Ocludina/farmacologia , Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Front Oncol ; 11: 647200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094934

RESUMO

OBJECTIVE: This study aimed to systematically investigate and compare the post-treatment recurrence of intraosseous ameloblastoma in patients treated with conservative or aggressive approaches. METHODS: Systemic searches of PubMed, Medline, Cochrane Library, and Embase databases from inception to October 28, 2020, were conducted. Studies that aimed to evaluate the recurrence of intraosseous ameloblastoma by conservative and aggressive treatment approaches were included. RESULTS: A total of 20 studies with 942 ameloblastoma cases were included. Fourteen studies included patients with ameloblastoma who received conservative treatment, and 16 studies reported the overall recurrence rate for patients undergoing aggressive treatment. The pooled results indicated that the recurrence rate for aggressive treatment [0.12, 95% confidence interval (CI) = 0.09-0.16] was significantly lower than that for conservative treatment, with a recurrence rate of 0.30 (95% CI = 0.23-0.39). Similar results were obtained when stratifying the participants by the histological classification. When trying stratification analysis following the original included studies, multicystic ameloblastoma presented a much higher recurrence rate than solid and unicystic ameloblastomas. CONCLUSION: These findings supported the hypothesis that aggressive treatment might lead to a lower recurrence rate than conservative treatment. More studies and meta-analyses following the new histological classification of ameloblastomas are needed to validate and support the findings.

10.
J Cancer ; 11(18): 5490-5502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742496

RESUMO

Objective: Abnormal expression of Wnt5a has been detected in various tumors, including ameloblastoma (AB). Yet, there is no specific mechanistic evidence for the functional role of Wnt5a in AB. In this study, we aimed to conduct a mechanistic examination of the importance of Wnt5a in AB development. Methods: The expressions of Wnt5a and Coro1A were examined by Western blot and immunohistochemistry both in AB tissues and AM-1 cells. The number and size of mitochondria were detected by electronic transmission microscope and confocal microscope. Gain-of-function and loss-of-function assays were used to explore the biological roles of Wnt5a and Coro1A in organelle dynamics changes and cell migration. Cell migration was detected by wound healing and transwell assay. Results: We found that in AM-1 cells, up-regulation of Wnt5a led to enhanced mitochondrial energy production and altered calcium homeostasis, with elevated calcium levels directly leading to altered mitochondrial dynamics and interactions between the cytoskeleton and the mitochondria. When Wnt5a or its downstream cytoskeleton-associated protein Coro1A was knocked down, the migration capacity of AM-1 cells was markedly impaired. Conclusion: Together, these results suggest that Wnt5a plays mitochondria and cytoskeleton specific roles in regulating the development of human AB, with its down-regulation leading to impaired tumor development, thus highlighting Wnt5a or Coro1A as potentially viable therapeutic targets for the treatment of AB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA