RESUMO
BACKGROUND & AIMS: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS: SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION: SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS: We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Glutamina , Neoplasias Hepáticas/genética , Hipóxia/genética , Transporte Biológico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genéticaRESUMO
Aptamers (small single strand DNA/RNAs) such as SYL3C are considered as ideal alternatives to antibodies in cancer related research studies. However, 3D structure predictions for aptamers and aptamer-protein complexes are scarce due to the high cost of experimental measurements and unreliable computer-based methods. Thus aptamers' diagnostic and therapeutic applications are severely restricted. To meet the challenge, we proposed a Martini-based aptamer-protein complex prediction protocol. By combining the base-base contact map from simulation and secondary structure prediction from various tools, improved secondary structure predictions can be obtained. This method reduced the risk of providing incorrect or incomplete base pairs in secondary structure prediction. Thus 3D structure modeling based on the secondary structure can be more reliable. We introduced the soft elastic network to the hairpin folded regions of the Martini ssDNAs to preserve their canonical structure. Using our protocol, we predicted the first 3D structure of the aptamer SYL3C and the SYL3C-EpCAM complex. We believe that our work could contribute to the future aptamer-related research studies and medical implications.
Assuntos
Aptâmeros de Nucleotídeos/química , Molécula de Adesão da Célula Epitelial/química , Simulação de Dinâmica Molecular , Humanos , TermodinâmicaRESUMO
Slide-free imaging techniques have shown great promise in improving the histological workflow. For example, computational high-throughput autofluorescence microscopy by pattern illumination (CHAMP) has achieved high resolution with a long depth of field, which, however, requires a costly ultraviolet laser. Here, simply using a low-cost light-emitting diode (LED), we propose a deep learning-assisted framework of enhanced widefield microscopy, termed EW-LED, to generate results similar to CHAMP (the learning target). Comparing EW-LED and CHAMP, EW-LED reduces the cost by 85×, shortening the image acquisition time and computation time by 36× and 17×, respectively. This framework can be applied to other imaging modalities, enhancing widefield images for better virtual histology.
RESUMO
As the global incidence of cancer continues to rise rapidly, the need for swift and precise diagnoses has become increasingly pressing. Pathologists commonly rely on H&E-panCK stain pairs for various aspects of cancer diagnosis, including the detection of occult tumor cells and the evaluation of tumor budding. Nevertheless, conventional chemical staining methods suffer from notable drawbacks, such as time-intensive processes and irreversible staining outcomes. The virtual stain technique, leveraging generative adversarial network (GAN), has emerged as a promising alternative to chemical stains. This approach aims to transform biopsy scans (often H&E) into other stain types. Despite achieving notable progress in recent years, current state-of-the-art virtual staining models confront challenges that hinder their efficacy, particularly in achieving accurate staining outcomes under specific conditions. These limitations have impeded the practical integration of virtual staining into diagnostic practices. To address the goal of producing virtual panCK stains capable of replacing chemical panCK, we propose an innovative multi-model framework. Our approach involves employing a combination of Mask-RCNN (for cell segmentation) and GAN models to extract cytokeratin distribution from chemical H&E images. Additionally, we introduce a tailored dynamic GAN model to convert H&E images into virtual panCK stains, integrating the derived cytokeratin distribution. Our framework is motivated by the fact that the unique pattern of the panCK is derived from cytokeratin distribution. As a proof of concept, we employ our virtual panCK stains to evaluate tumor budding in 45 H&E whole-slide images taken from breast cancer-invaded lymph nodes . Through thorough validation by both pathologists and the QuPath software, our virtual panCK stains demonstrate a remarkable level of accuracy. In stark contrast, the accuracy of state-of-the-art single cycleGAN virtual panCK stains is negligible. To our best knowledge, this is the first instance of a multi-model virtual panCK framework and the utilization of virtual panCK for tumor budding assessment. Our framework excels in generating dependable virtual panCK stains with significantly improved efficiency, thereby considerably reducing turnaround times in diagnosis. Furthermore, its outcomes are easily comprehensible even to pathologists who may not be well-versed in computer technology. We firmly believe that our framework has the potential to advance the field of virtual stain, thereby making significant strides towards improved cancer diagnosis.
RESUMO
BACKGROUND: Ovarian cancer (OC) typically develops an immunosuppressive microenvironment by funtional changes of host immune cells. Dysregulated m6A level is associated with cancer progression via the intrinsic oncogenic pathways. However, the role of m6A in regulating host immune cell function during anti-tumor immunity needs comprehensive analysis. This study aimed to investigate the role of METTL3, a catalytic subunit of the methyltransferase complex, in regulating host immune cell response against OC. METHODS: In this study, myeloid-specific Mettl3 gene knockout (Mettl3-cKO) mice were bred using the Cre-LoxP system. Intraperitoneally injection of ID8 cells was used as a syngeneic OC model. Furthermore, the compositions of immune cell populations were analyzed by flow cytometry and single-cell sequencing. Moreover, chemokines and cytokines secretion were assessed using ELISA. Lastly, the role of METTL3 in regulating IL-1ß secretion and inflammasome activation in bone marrow-derived macrophages cocultured with ID8 cells was specified by ELISA and immunoblotting. RESULTS: It was revealed that OC cell growth was enhanced in Mettl3-cKO mice. Furthermore, a shift of decreased M1 to increased M2 macrophage polarization was observed during OC progression. Moreover, Mettl3 depletion in myeloid lineage cells increased secretion of CCL2 and CXCL2 in peritoneal lavage fluild. Interestingly, Mettl3 deficiency enhanced IL-1ß secretion induced by viable ID8 cells independent of inflammasome activation and cell death. Therefore, OC cells in tumor-bearing mice trigger a slight inflammatory response with a low-to-moderate secretion of pro-inflammatory cytokines and chemokines. CONCLUSION: This study provides new insights into METTL3-mediated m6A methylation, which regulates host immune response against OC.
RESUMO
Emerging evidence has indicated that peroxisome proliferator-activated receptor-gamma coactivator-1α (PPARGC1A) is involved in hepatocellular carcinoma (HCC). However, its detailed function and up- and downstream mechanisms are incompletely understood. In this study, we confirmed that PPAGC1A is lowly expressed in HCC and is associated with poor prognosis using large-scale public datasets and in-house cohorts. PPAGC1A was found to impair the progression and sensitivity of HCC to lenvatinib. Mechanistically, PPAGC1A repressed bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) by inhibiting WNT/ß-catenin signaling. BAMBI mediated the function of PPARGC1A and regulated ACSL5 through TGF-ß/SMAD signaling. PPARGC1A/BAMBI regulated ROS production and ferroptosis-related cell death by controlling ACSL5. PPARGC1A/BAMBI/ACSL5 axis was hypoxia-responsive. METTL3 and WTAP silenced PPARGC1A in an m6A-YTHDF2-dependent way under normoxia and hypoxia, respectively. Metformin restored PPARGC1A expression by reducing its m6A modification via inhibiting METTL3. In animal models and patient-derived organoids, consistent functional data of PPARGC1A/BAMBI/ACSL5 were observed. Conclusions: These findings provide new insights into the role of the aberrant PPARGC1A/BAMBI/ACSL5 axis in HCC. And the mechanism of PPARGC1A dysregulation was explained by m6A modification. Metformin may benefit HCC patients with PPARGC1A dysregulation.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , PPAR gamaRESUMO
A novel sensing platform for sensitive detection of copper(ii) ions (Cu2+) in living cells and body fluids was developed by taking advantage of the excellent fluorescence quenching ability of graphdiyne (GDY) and the high specificity of click chemistry for the first time.
RESUMO
The circulating tumor cell (CTC) count is closely related to cancer recurrence and metastasis. The technology that can in vivo destroy CTCs may bring great benefits to patients, which is an urgent clinical demand. Here, a minimally invasive therapeutic intravenous catheter for in vivo enriching and photothermal killing of CTCs is developed. The surface of catheter is modified with anti-EpCAM antibody and the interior is filled with black phosphorus nanosheets (BPNSs). CTCs in the peripheral blood are captured by the catheter continually with the aid of circulation. The captured CTCs are used for downstream analyses or in vivo eliminated by the near-infrared (NIR) photothermal effect of BPNSs. A capture efficiency of 2.1% is obtained during the 5 min of treatment, and 100% of the captured CTCs are killed by following NIR light irradiation in both an in vitro closed-loop circulation system and an in vivo rabbit model. This cost-effective modality for lowering the CTCs burden can be a good supplement to traditional therapies, which holds great promise as an effective clinical intervention for cancer patients.
RESUMO
Tumor vaccines are a promising form of cancer immunotherapy, but difficulties such as neo-antigen identification, activation of immune cells, and tumor infiltration prevent their clinical breakthrough. Interestingly, nanotechnology-based photothermal therapy (PTT) has great potential to overcome these barriers. Previous studies have shown that serum exosomes (hEX) from hyperthermia-treated tumor-bearing mice displayed an array of patient-specific tumor-associated antigens (TAAs), and strong immunoregulatory abilities in promoting dendritic cell (DC) differentiation and maturation. Here, we developed a tumor vaccine (hEX@BP) by encapsulating black phosphorus quantum dots (BPQDs) with exosomes (hEX) against a murine subcutaneous lung cancer model. In comparison with BPQDs alone (BP), hEX@BP demonstrated better long-term PTT performance, greater elevation of tumor temperature and tumor targeting efficacy in vivo. Vaccination with hEX@BP in combination with PTT further demonstrated an outstanding therapeutic efficacy against established lung cancer, and promoted the infiltration of T lymphocytes into the tumor tissue. Our findings demonstrated that hEX@BP might be an innovative cancer photo-nanovaccine that offers effective immuno-PTT against cancers.