Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Virol ; 161(1): 165-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467928

RESUMO

The bovine papillomavirus E1 helicase is essential for viral replication. In dividing cells, DNA replication maintains, but does not increase, the viral genome copy number. Replication is limited by low E1 expression and an E1 nucleocytoplasmic shuttling mechanism. Shuttling is controlled in part by phosphorylation of E1 by cellular kinases. Here we investigate conserved sites for phosphorylation by kinase CK2 within the E1 nuclear localization signal. When these CK2 sites are mutated to either alanine or aspartic acid, no change in replication phenotype is observed, and there is no effect on the subcellular distribution of E1, which remains primarily nuclear. This demonstrates that phosphorylation of E1 by CK2 at these sites is not a factor in regulating viral DNA replication in dividing cells.


Assuntos
Papillomavirus Bovino 1/metabolismo , Caseína Quinase II/metabolismo , Doenças dos Bovinos/enzimologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sinais de Localização Nuclear/metabolismo , Infecções por Papillomavirus/veterinária , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Papillomavirus Bovino 1/química , Papillomavirus Bovino 1/genética , Caseína Quinase II/genética , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/virologia , Núcleo Celular/virologia , Proteínas de Ligação a DNA/genética , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Fosforilação , Transporte Proteico , Proteínas Virais/genética
2.
J Cell Sci ; 125(Pt 21): 5208-20, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22899724

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) mediate the budding of intralumenal vesicles (ILVs) at late endosomes. ESCRT dysfunction causes drastic changes in endosome morphology, which are manifested in Saccharomyces cerevisiae by the formation of aberrant endosomes known as class E compartments. Except for the absence of ILVs, the mechanistic basis for class E compartment biogenesis is unknown. We used electron microscopy to examine endosomal morphology in response to transient ESCRT inactivation and recovery in yeast expressing the temperature-sensitive mutant vps4(ts) allele. Our results show class E compartments accumulate fourfold the amount of membrane normally present at multivesicular bodies and that multivesicular bodies can form directly from class E compartments upon recovery of ESCRT function. We found class E compartment formation requires Vps21, which is orthologous to the Rab5A GTPase in metazoans that promotes fusion of endocytic vesicles with early endosomes and homotypic fusion of early endosomes with one another. We also determined that class E compartments accumulate GTP-bound Vps21 and its effector, the class C core vacuole/endosome tethering (CORVET). Ypt7, the yeast ortholog of Rab7 that in metazoans promotes fusion of late endosomes with lysosomes, also accumulates at class E compartments but without its effector, the homotypic fusion and protein sorting (HOPS), signifying that Ypt7 at class E compartments is dysfunctional. These results suggest that failure to complete Rab5-Rab7 conversion is a consequence of ESCRT dysfunction, which results in Vps21 hyperactivity that drives the class E compartment morphology. Indeed, genetic disruption of Rab conversion without ESCRT dysfunction autonomously drives the class E compartment morphology without blocking ILV budding.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Endossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/enzimologia , Membranas Intracelulares/enzimologia , Membranas Intracelulares/metabolismo , Microscopia de Fluorescência , Saccharomyces cerevisiae/ultraestrutura
3.
Mol Biol Cell ; 26(7): 1345-56, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673804

RESUMO

Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA