Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 134(32): 13145-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22849575

RESUMO

A novel porous coordination polymer, Cu(II)(mtpm)Cl(2) [mtpm = tetrakis(m-pyridyloxy methylene)methane], has been synthesized, and its crystal structure has been determined. Its adsorption isotherms for water, methanol, and ethanol are totally different from each other. It adsorbs water at low humidity and shows gate-open behavior for methanol, but it does not adsorb ethanol. This compound has the capacity to separate both methanol and water from bioethanol, which is a mixture of water, methanol, and ethanol.


Assuntos
Técnicas de Química Analítica/métodos , Etanol/química , Metanol/química , Polímeros/química , Água/química , Adsorção , Biocombustíveis , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ligantes , Modelos Moleculares , Porosidade
2.
J Am Chem Soc ; 134(12): 5472-5, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22409393

RESUMO

We controlled the hydrophilicity of metal-organic frameworks (MOFs) to achieve high proton conductivity and high adsorption of water under low humidity conditions, by employing novel class of MOFs, {NR(3)(CH(2)COOH)}[MCr(ox)(3)]·nH(2)O (abbreviated as R-MCr, where R = Me (methyl), Et (ethyl), or Bu (n-butyl), and M = Mn or Fe): Me-FeCr, Et-MnCr, Bu-MnCr, and Bu-FeCr. The cationic components have a carboxyl group that functions as the proton carrier. The hydrophilicity of the cationic ions was tuned by the NR(3) residue to decrease with increasing bulkiness of the residue: {NMe(3)(CH(2)COOH)}(+) > {NEt(3)(CH(2)COOH)}(+) > {NBu(3)(CH(2)COOH)}(+). The proton conduction of the MOFs increased with increasing hydrophilicity of the cationic ions. The most hydrophilic sample, Me-FeCr, adsorbed a large number of water molecules and showed a high proton conductivity of ~10(-4) S cm(-1), even at a low humidity of 65% relative humidity (RH), at ambient temperature. Notably, this is the highest conductivity among the previously reported proton-conducting MOFs that operate under low RH conditions.

3.
J Am Chem Soc ; 133(7): 2034-6, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21284399

RESUMO

The proton conductivities of the porous coordination polymers M(OH)(bdc-R) [H(2)bdc = 1,4-benzenedicarboxylic acid; M = Al, Fe; R = H, NH(2), OH, (COOH)(2)] were investigated under humid conditions. Good correlations among pK(a), proton conductivity, and activation energy were observed. Fe(OH)(bdc-(COOH)(2)), having carboxy group and the lowest pK(a), showed the highest proton conductivity and the lowest activation energy in this system. This is the first example in which proton conductivity has been widely controlled by substitution of ligand functional groups in an isostructural series.

4.
Struct Dyn ; 8(5): 054501, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34660845

RESUMO

Dynamics of water and other small molecules confined in nanoporous materials is one of the current topics in condensed matter physics. One popular host material is a benzenedicarboxylate-bridging metal (III) complex abbreviated to MIL-53, whose chemical formula is M(OH)[C6H2(CO2)2R2] where M = Cr, Al, Fe and R = H, OH, NH2, COOH. These materials absorb not only water but also ammonia molecules. We have measured the quasi-elastic neutron scattering of MIL-53(Fe)-(COOH)2·2H2O and MIL-53(Fe)-(COOH)2·3NH3 which have full guest occupancy and exhibit the highest proton conductivity in the MIL-53 family. In a wide relaxation time region (τ = 10-12-10-8 s), two relaxations with Arrhenius temperature dependence were found in each sample. It is of interest that their activation energies are smaller than those of bulk H2O and NH3 liquids. The momentum transfer dependence of the relaxation time and the temperature dependence of the relaxation intensity suggest that the proton conduction is due to the Grotthuss mechanism with thermally excited H2O and NH3 molecules.

5.
J Am Chem Soc ; 131(37): 13516-22, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19715318

RESUMO

The oxalate-bridged bimetallic complexes {NH(prol)(3)}[M(II)Cr(III)(ox)(3)] (M(II) = Mn(II), Fe(II), Co(II)) with hydrophilic tri(3-hydroxypropyl)ammonium (NH(prol)(3)(+)) were prepared by a new synthetic procedure, and the effects of the NH(prol)(3)(+) ion upon the structure, magnetism, and electrical conduction were studied. An X-ray crystallographic study of the MnCr dihydrate, {NH(prol)(3)}[MnCr(ox)(3)].2H(2)O, was performed. Crystal data: hexagonal, P6(3), a = b = 9.3808(14) A, c = 15.8006(14) A, Z = 2. The structure comprises oxalate-bridged bimetallic layers interleaved by NH(prol)(3)(+) ions. The ions assume a tripodal configuration and are hydrogen bonded to the bimetallic layers together with water molecules, giving rise to a short interlayer separation (7.90 A) and unsymmetrical faces to the bimetallic layer. Cryomagnetic studies demonstrate ferromagnetic ordering with transition temperature of 5.5 K for the MnCr complex, 9.0 K for the FeCr complex, and 10.0 K for the CoCr complex. The interlayer magnetic interaction is negligibly weak in all of the complexes despite the short interlayer separation. A slow magnetization is observed in all the complexes. This is explained by spin canting associated with the unsymmetrical feature of the bimetallic layer. The complexes show proton conduction of 1.2 x 10(-10) to 4.4 x 10(-10) S cm(-1) under 40% relative humidity (RH) and approximately 1 x 10(-4) S cm(-1) under 75% RH. On the basis of water adsorption/desorption profiles, the conduction under 40% RH is mediated through the hydrogen-bonded network formed by the bimetallic layer, NH(prol)(3)(+) ions, and water molecules (two per MCr). Under 75% RH, additional water molecules (three per MCr) are concerned with the high proton conduction. This is the first example of a metal complex system exhibiting coexistent ferromagnetism and proton conduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA