Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Nanosci Nanotechnol ; 19(2): 1208-1212, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360236

RESUMO

Catalytic combustion of benzene, toluene, and hexane (BTH) was carried out to investigate in this study the effect of palladium precursor on the property and performance of 1 wt.% Pd/γ-Al2O3. Properties were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET) surface area, temperature programmed reduction (TPR), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. When palladium precursor was used to prepare the catalyst, it had a great effect on the property and performance of the supported palladium catalyst. Total acidity, size of palladium particle, and oxidation state of palladium were associated with catalytic activity of the catalyst. Higher total acidity of the catalyst and larger particle size of palladium favorably affected the catalytic activity. In addition, palladium species with high oxidation state might be useful to increase catalytic activity in BTH combustion.

2.
J Nanosci Nanotechnol ; 19(4): 2329-2333, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486993

RESUMO

In this work, we prepared basalt based nanostructured zeolite 13X by alkali fusion and hydrothermal synthesis process. The sample prepared was characterized using XRD, SEM, and low-temperature nitrogen analysis. The adsorption equilibrium and kinetic characteristics of ammonia nitrogen (NH+4-N) and phosphate phosphorus (PO3-4-P) were investigated. It was found that the basalt based nanostructured zeolite 13X showed high adsorption capacities for NH+4-N (75 mg/g) and PO3-4-P (25 mg/g) under the experimental conditions used. Our results demonstrate that basalt based zeolite 13X can be a good alternative adsorbent for the simultaneously removal of NH+4-N and PO3-4-P from aqueous solution.

3.
J Nanosci Nanotechnol ; 18(2): 1487-1491, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448620

RESUMO

Catalytic oxidation of toluene was carried out to investigate the effect of consecutive run on the catalytic property and performance of 1 wt.% Pt/γ-Al2O3 and the reduced 1 wt.% Pt/γ-Al2O3. The properties were characterized by X-ray diffraction (XRD), the Brunauer Emmett Teller (BET) surface area, temperature programmed reduction (TPR), and transmission electron microscopy (TEM) analyses. In consecutive experiments the second catalytic run resulted in a significant increase of the toluene conversion compared to the first catalytic run, but the toluene conversion in the third catalytic run was similar to that of the second catalytic run. In addition, the reducing treatment of the catalyst led to an increase in the catalytic activity. The increasing catalytic activity in consecutive runs was dependent on the platinum particle size and the oxidation state of the platinum. The increase in platinum particle size during reaction and the reduction in the oxidation state of platinum by hydrogen pretreatment were responsible for the increase in the catalytic activity.

4.
J Nanosci Nanotechnol ; 18(3): 2196-2199, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448745

RESUMO

The present work describes the preparation of carbon materials from beer lees and their hydrogen adsorption abilities. Activated carbons (ACs) from beer lees were prepared through chemical activation using potassium hydroxide as an activating agent. The low temperature nitrogen adsorption isotherm studies on prepared ACs were conducted at 77 K to determine their physical properties and adsorption energy distribution. The beer lees based carbons have energetically heterogeneous surfaces and high surface area ranging from 1927-2408 m2/g. ACs prepared in this study show the gravimetric hydrogen adsorption capacity of 2.43-2.92 wt% depending on their physical properties.

5.
Phys Chem Chem Phys ; 18(7): 5659, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26792293

RESUMO

Correction for 'Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells' by Kyung-Jun Hwang et al., Phys. Chem. Chem. Phys., 2015, 17, 21974-21981.

6.
Phys Chem Chem Phys ; 17(34): 21974-81, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235488

RESUMO

The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.

7.
Int J Biol Macromol ; 255: 128087, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979743

RESUMO

Captopril (CTP) is an oral drug widely used to treat high blood pressure and congestive heart failure. In this study, CTP-incorporated biomaterials for antihypertensive therapy were synthesized from chitosan, carboxymethyl cellulose, and plasticizers. The physicochemical properties of the prepared biomaterials were characterized using FE-SEM, FT-IR analysis, and physical properties. CTP release experiments were carried out in buffer solutions at various pH values and temperatures. Results indicated that above 99.0 % of CTP was released within 180 min. Optimization of the experimental conditions for CTP release was analyzed by using response surface methodology (RSM). Results of CTP release through artificial skin indicated that CTP was continuously released above 95.0 % from the prepared biomaterials for 36.0 h. The CTP release mechanisms into a buffer and through artificial skin followed pseudo-Fickian diffusion mechanism and non-Fickian diffusion mechanisms, respectively. Moreover, angiotensin-converting enzyme (ACE) inhibition (related to cardiovascular disease) via the released CTP clearly reveals that the prepared biomaterials have a high potential as a transdermal drug delivery agent in antihypertensive therapy.


Assuntos
Captopril , Quitosana , Captopril/química , Captopril/uso terapêutico , Anti-Hipertensivos/química , Quitosana/química , Carboximetilcelulose Sódica/química , Liberação Controlada de Fármacos , Materiais Biocompatíveis , Espectroscopia de Infravermelho com Transformada de Fourier , Portadores de Fármacos/química
8.
ACS Appl Mater Interfaces ; 16(23): 30137-30146, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814156

RESUMO

The use of powered activated carbon is often limited by inconsistent particle sizes and porosities, leading to reduced adsorption efficiencies. In this study, we demonstrated a practical and environmentally friendly method for creating a 3D graphene nanostructure with highly uniform ultramicropores from wood-based biomass through a series of delignification, carbonization, and activation processes. In addition, we evaluated the capture characteristics of this structure for CO2, CH4, and N2 gases as well as its selectivity for binary-mixture gases. Based on textural and chemical analyses, the delignified monolith had a lamellar structure interconnected by cellulose-based fibers. Interestingly, applying the KOH vapor activation technique solely to the delignified samples led to the formation of a monolithic 3D network composed of interconnected graphene sheets with a high degree of crystallinity. Especially, the Act. 1000 sample exhibited a specific surface area of 1480 m2/g and a considerable pore volume of 0.581 cm3/g, featuring consistently uniform ultramicropores over 90% in the range of 3.5-11 Å. The monolithic graphene-based samples, predominantly composed of ultramicropores, demonstrated a notably heightened capture capacity of 6.934 mol/kg at 110 kPa for CO2, along with favorable selectivity within binary gas mixtures (CO2/N2, CO2/CH4, and CO2/CH4). Our findings suggest that this biomass-derived 3D structure has the potential to serve as a monolithic adsorbent in gas separation applications.

9.
J Nanosci Nanotechnol ; 13(6): 4168-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862467

RESUMO

In order to investigate the effect of surface morphology on the sensing performance in detecting sulfur dioxide, two different types polystyrene, polystyrene latex spheres (PLS) and polystyrene film (PSF), are synthesized by using an emulsion polymerization, which are coated on quartz crystal microbalance (QCM) surfaces. It is found that the sensing performance is strongly dependent on the morphology of polymer materials. The adsorption capacity of the synthesized PLS is higher than that of the PSF. In addition, the response of the PLS coated QCM to SO2 is approximately 6 times faster than that of the PSF coated one. The adsorption characteristics of SO2 on the PLS coated QCM are also evaluated in terms of temperature and concentration. These results show that the PLS can be used as SO2 sensor materials due to their high sensitivity and quick response.

10.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999315

RESUMO

Activated carbon (AC) compounds derived from biomass precursors have garnered significant attention as electrode materials in electric double-layer capacitors (EDLCs) due to their ready availability, cost-effectiveness, and potential for mass production. However, the accessibility of their active sites in electrochemistry has not been investigated in detail. In this study, we synthesized two novel macro/micro-porous carbon structures prepared from a chitosan precursor using an acid/potassium hydroxide activation process and then examined the relationship between their textural characteristics and capacitance as EDLCs. The material characterizations showed that the ACs, prepared through different activation processes, differed in porosity, with distinctive variations in particle shape. The sample activated at 800 °C (Act-chitosan) was characterized by plate-shaped particles, a specific surface area of 4128 m2/g, and a pore volume of 1.87 cm3/g. Assessment of the electrochemical characteristics of Act-chitosan showed its remarkable capacitance of 183.5 F/g at a scan rate of 5 mV/s, and it maintained exceptional cyclic stability even after 10,000 cycles. The improved electrochemical performance of both chitosan-derived carbon structures could thus be attributed to their large, well-developed active sites within pores < 2 nm, despite the fact that interconnected macro-porous particles can enhance ion accessibility on electrodes. Our findings provide a basis for the fabrication of biomass-based materials with promising applications in electrochemical energy storage systems.

11.
J Nanosci Nanotechnol ; 11(8): 7206-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103158

RESUMO

In this study, the molecularly imprinted polymers (MIPs) are designed to improve their sensitivity and selectivity for specific aromatic hydrocarbons such as benzene, toluene, and xylene isomers. The MIPs based on methyl acrylate (MA) monomer are prepared using toluene and ethylene glycol dimetacrylate (EGDMA) as a template and a cross linking agent, respectively. The binding sites on the MIPs are characterized by using Fourier transform infrared spectrometry (FT-IR), nitrogen adsorption isotherms, and transmission electron microscopy (TEM). The selective behaviors of the MIPs are evaluated by their adsorption properties on a gravimetric apparatus. It is found that the performance is strongly influenced by the composition ratios of cross-linker, functional monomer, and template molecule. The molecular recognition ability can be assessed on the basis of an imprinting effect. The results indicate that the prepared MIPs can be used for the aromatic hydrocarbon sensor materials with high sensitivity and selectivity.

12.
J Nanosci Nanotechnol ; 11(2): 1359-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456188

RESUMO

Response surface methodology (RSM), a collection of statistical and mathematical techniques, has been widely used to optimize and design operating conditions. Although this method is suitable for optimizing experimental conditions, very few attempts have been made on the electrospinning process. In this work, RSM was used to model and optimize of the electrospinning parameters for polyvinylacetate (PVAc) nanofibers. PVAc solution in acetone was electrospun under various conditions such as concentration of spinning solution and applied voltage. The experimental results indicate that concentrations of solution and applied voltage played an important role on the diameter size of PVAc nanofibers. The second order polynomial function was used to correlate the fiber diameter with the production variables. The predicted fiber diameters were in good agreement with the experimental results.

13.
J Nanosci Nanotechnol ; 11(8): 7347-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103193

RESUMO

Colloidal Pt nanoparticles are prepared using H2PtCl6 as a precursor, polyvinylpyrrolidone (PVP: molecular weight = 10,000 and 40,000) and hydrogen as a stabilizing agent and a reducing agent, respectively. The amounts of the precursor and the stabilizing agent and the molecular weight of PVP have an effect on the formation of Pt nanoparticles. Supported Pt catalyst (CSPt) is prepared from colloidal Pt nanoparticles and y-Al2O3. Another supported Pt catalyst (ISPt) is prepared by using the conventional incipient wetness impregnation method with an aqueous H2PtCl6 solution and gamma-Al2O3. The catalytic activities of CSPt and ISPt catalysts are compared for VOC (toluene) oxidation. Transmission Electron Microscopy (TEM), UV-vis, X-ray diffraction (XRD) and temperature programmed reduction (TPR) are used to characterize CSPt and ISPt catalysts. The experimental results reveal that the catalytic activity of CSPt is superior to that of ISPT.

14.
J Nanosci Nanotechnol ; 11(2): 1518-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456226

RESUMO

We investigated the heterogeneous adsorption and thermal desorption behaviors of acetone, n-hexane and trichloroethylene (TCE) on single walled carbon nanotubes (SWCNTs). Adsorption isotherms for selected molecules on SWCNTs were measured using a quartz spring balance at temperatures ranging from 303.15 to 323.15 K. Thermal gravimetric desorption experiments were also conducted at different heating rates (2-10 K/min) to obtain information about the interaction strength of hydrocarbons with SWCNTs surfaces. The adsorption isotherm data were analyzed successfully with the temperature dependent Toth equation. To obtain the adsorption and desorption energy distribution functions (AED/DED) for hydrocarbons and nitrogen, the integral equation with Fowler-Guggenheim isotherm (for AED) and first order desorption rate equation (for DED) were solved using the generalized nonlinear regularization method. It was found that Henry's constants, the isosteric heats of adsorption, and the pattern of energy distribution function were highly dependent on the polarizability.

15.
J Nanosci Nanotechnol ; 11(2): 1525-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456228

RESUMO

To examine the effect of chemical treatment on the adsorption and catalytic activity of nanostructured platinum based catalyst, the aged commercial Pt/AC catalyst was pretreated with sulfuric acid (H2SO4) and a cleaning agent (Hexane). Several reliable methods such as nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) were employed to characterize the aged Pt/AC catalyst and its chemically pretreated Pt/AC catalysts. The catalytic and adsorption activities of nano-structured heterogeneous Pt/AC catalyst were investigated on the basis of toluene oxidation and adsorption isotherm data. In addition, the adsorption isotherms of toluene were used to calculate the adsorption energy distribution functions for the parent catalyst and its pre-treated nano-structured Pt/AC catalysts. It was found that sulfuric acid aqueous treatment can enhance the catalytic performance of aged Pt/AC catalyst toward catalytic oxidation of toluene. It was also shown that a comparative analysis of the energy distribution functions for nano-structured Pt/AC catalysts as well as the pore size distribution provides valuable information about their structural and energetic heterogeneity.

16.
J Nanosci Nanotechnol ; 21(9): 4936-4940, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691894

RESUMO

In order to prevent the harmful effects in water phase such as eutrophication, industrial and urban sewages must be treated before discharging into the aquatic environment. In this work, amine grafted magnetic nanoporous silica materials are synthesized and applied as an adsorbent for the recovery of nutrients from waste black water. The magnetic force could separate the surface func-tionalized nanoporous silica materials from aqueous medium after treatment, and showed the higher adsorption capacity of nutrients than that of the original mesoporous silica. The multi-functional nanoporous silica adsorbents were effectively removed phosphate and nitrate at 20 °C with the maximum adsorption capacities of 42.5 and 34.9 mg/g, respectively. The overall results indicated that the synthesized multi-functional nanoporous silica sorbents can be a candidate material for the nutrient recovery in wastewater treatment system.


Assuntos
Dióxido de Silício , Águas Residuárias , Adsorção , Nutrientes , Água
17.
Int J Biol Macromol ; 175: 217-228, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548320

RESUMO

This study focuses on the synthesis of functional allopurinol (ALP) imprinted biomaterials for a transdermal drug delivery using mung bean starch (MBS), polyvinyl alcohol (PVA), sodium benzoate (SB) as a crosslinking agent, and poloxamer (PX) as a thermo-sensitive polymer. Prepared functional biomaterials were characterized and evaluated by SEM, FT-IR analysis, and physical properties. Results of ALP recognition properties indicated that adsorbed amounts (Q) of ALP on functional ALP imprinted biomaterials were 3.8 to 4.9-fold higher than that of non-ALP imprinted biomaterial. Results of ALP release revealed that the ALP release rate for PX added biomaterials was 1.10 (36.5 °C) or 1.30 (45 °C) times faster than that at 25 °C. These results indicate that functional ALP imprinted biomaterials have thermo-sensitive properties due to the addition of PX. Results of ALP release using artificial skin indicated that ALP release was increased at a relatively steady-state rate for 3 h and that the ALP release behavior followed the non-Fickian diffusion mechanism.


Assuntos
Alopurinol/química , Sistemas de Liberação de Medicamentos/métodos , Amido/farmacologia , Administração Cutânea , Adsorção , Alopurinol/farmacologia , Materiais Biocompatíveis/farmacologia , Difusão/efeitos dos fármacos , Hidrogéis , Polímeros/química , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adesivo Transdérmico
18.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205908

RESUMO

The design of photoactive materials and interface engineering between organic/inorganic layers play a critical role in achieving enhanced performance in energy-harvesting devices. Two-dimensional transitional dichalcogenides (TMDs) with excellent optical and electronic properties are promising candidates in this regard. In this study, we demonstrate the fabrication of size-controlled MoS2 quantum dots (QDs) and present fundamental studies of their optical properties and their application as a hole-transport layer (HTL) in organic solar cells (OSCs). Optical and structural analyses reveal that the as-prepared MoS2 QDs show a fluorescence mechanism with respect to the quantum confinement effect and intrinsic/extrinsic states. Moreover, when incorporated into a photovoltaic device, the MoS2 QDs exhibit a significantly enhanced performance (5/10-nanometer QDs: 8.30%/7.80% for PTB7 and 10.40%/10.17% for PTB7-Th, respectively) compared to those of the reference device (7.24% for PTB7 and 9.49% for PTB7-Th). We confirm that the MoS2 QDs clearly offer enhanced transport characteristics ascribed to higher hole-mobility and smoother root mean square (Rq) as a hole-extraction material. This approach can enable significant advances and facilitate a new avenue for realizing high-performance optoelectronic devices.

19.
Nanomaterials (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578660

RESUMO

Ag particles were precipitated on an activated carbon fiber (ACF) surface using a liquid phase plasma (LPP) method to prepare a Ag/ACF composite. The efficiency was examined by applying it as an adsorbent in the acetaldehyde adsorption experiment. Field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry confirmed that Ag particles were distributed uniformly on an ACF surface. X-ray diffraction and X-ray photoelectron spectroscopy confirmed that metallic silver (Ag0) and silver oxide (Ag2O) precipitated simultaneously on the ACF surface. Although the precipitated Ag particles blocked the pores of the ACF, the specific surface area of the Ag/ACF composite material decreased, but the adsorption capacity of acetaldehyde was improved. The AA adsorption of ACF and Ag/ACF composites performed in this study was suitable for the Dose-Response model.

20.
J Nanosci Nanotechnol ; 21(9): 4902-4907, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691887

RESUMO

Dramatic increases in fossil fuel consumption inevitably led to the emission of huge amounts of CO2 gas, causing abnormalities in the climate system. Despite continuous efforts to resolve global atmospheric problems through CO2 capture and separation, success has been limited by poor CO2 selectivity in the CO2/N2 mixture. Herein, we demonstrate the fabrication of a three-dimensional (3D) nanostructure from two-dimensional transition metal carbides (Ti3C2Tx, MXene), and assess its utility as an adsorbent in a CO2 capture system. Through structural and textural analysis, we confirm that the as-prepared MXene possesses high size uniformity with a thickness of ~2.5 nm, and that an MXene aerogel interconnected by MXene nanosheets has a 3D porous architecture with micro/nano porosity (Barrett-Joyner-Halenda (BJH) pore size = 11.4 nm). Moreover, the MXene aerogel exhibits favorable adsorption behavior for CO2, due to the high-quality MXene nanosheets even with a low specific surface area. Our approach could lead to significant advances in CO2 capture by adsorbents and open up new opportunities for mass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA