Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 15(40): e1902065, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31379070

RESUMO

The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic-activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub-parts-per-trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic-activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.

2.
Sensors (Basel) ; 17(2)2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178216

RESUMO

A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO2, WO3 and In2O3 NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO2 NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p-type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO2 NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.

3.
J Korean Med Sci ; 31(6): 1003-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27247513

RESUMO

Multiple endocrine neoplasia (MEN) mutation is an autosomal dominant disorder characterized by the occurrence of parathyroid, pancreatic islet, and anterior pituitary tumors. The incidence of insulinoma in MEN is relatively uncommon, and there have been a few cases of MEN manifested with insulinoma as the first symptom in children. We experienced a 9-year-old girl having a familial MEN1 mutation. She complained of dizziness, occasional palpitation, weakness, hunger, sweating, and generalized tonic-clonic seizure that lasted for 5 minutes early in the morning. At first, she was only diagnosed with insulinoma by abdominal magnetic resonance images of a 1.3 x 1.5 cm mass in the pancreas and high insulin levels in blood of the hepatic vein, but after her father was diagnosed with MEN1. We found she had familial MEN1 mutation, and she recovered hyperinsulinemic hypoglycemia after enucleation of the mass. Therefore, the early genetic identification of MEN1 mutation is considerable for children with at least one manifestation.


Assuntos
Insulinoma/patologia , Neoplasia Endócrina Múltipla Tipo 1/diagnóstico , Neoplasias Pancreáticas/patologia , Alelos , Sequência de Bases , Criança , Análise Mutacional de DNA , Feminino , Humanos , Hipoglicemia/diagnóstico , Insulina/sangue , Insulinoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neoplasia Endócrina Múltipla Tipo 1/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Convulsões/complicações
4.
ACS Appl Mater Interfaces ; 16(2): 2457-2466, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166386

RESUMO

Recent studies have focused on exploring the potential of resistive random-access memory (ReRAM) utilizing halide perovskites as novel data storage devices. This interest stems from its notable attributes, including a high ON/OFF ratio, low operating voltages, and exceptional mechanical properties. Nevertheless, there have been reports indicating that memory systems utilizing halide perovskites encounter certain obstacles pertaining to their stability and dependability, mostly assessed through endurance and retention time. Moreover, the presence of these problems can potentially restrict their practical applicability. This study explores a resistive switching memory device utilizing MAPbBr3 perovskite, which demonstrates bipolar switching characteristics. The device fabrication procedure involves a low-temperature, all-solution process. For the purpose of enhancing the device's reliability, the utilization of TPBI(2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) as an electron transfer material on the MAPbBr3 switching layer was implemented for the first time. The formation and rupture of Ag filaments in the MAPbBr3 perovskite switching layer are attributed to reduction-oxidation reactions. The TPBI is involved in the regulation of filaments during the SET and RESET processes. Hence, it can be shown that the MAPbBr3 device incorporating TPBI exhibited about 1000 endurance cycles when subjected to continuous voltage pulses. Moreover, the device consistently maintained ON/OFF ratios above 107. In contrast, the original MAPbBr3 device without TPBI demonstrated a significantly lower endurance with only 90 cycles observed. In addition, the MAPbBr3 device integrated with TPBI exhibited a retention time exceeding 3 × 103 s. The findings of this research provide compelling evidence to support the notion that electron transfer materials have promise for the development of halide perovskite memory systems owing to their favorable attributes of dependability and stability.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39445408

RESUMO

Transition-metal sulfides are emerging as promising materials for chemiresistive gas sensors─a field still dominated by semiconducting metal oxides. Despite the availability of materials with tunable electronic, optical, physical, and chemical properties, few studies have moved beyond synthesis to provide strategies for enhancing gas sensing performance through material modification. Here, we present a simple, scalable synthetic strategy for developing an optically semitransparent, flexible NH3 gas sensor with a highly uniform, ultrathin CuS (covellite) active sensing layer. The optical and chemical properties of the CuS were precisely controlled near the percolation threshold of thin-film formation by varying key experimental parameters such as the Cu film thickness (<10 nm) and the sulfurization time (∼90 s) under ambient conditions. Experimental and computational studies of CuS and its NH3 sensing characteristics identify key physicochemical properties. The controlled surface chemistry and morphology of the ultrathin CuS layer demonstrate its effectiveness in functional NH3 sensing devices, which achieve a calculated detection limit of 1.38 ppm for NH3 gas at 150 °C, along with exceptional mechanical robustness and optical semitransparency in the visible-light spectrum.

6.
Nanoscale Adv ; 5(10): 2767-2775, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37205284

RESUMO

NO2 is a major air pollutant that should be monitored due to its harmful effects on the environment and human health. Semiconducting metal oxide-based gas sensors have been widely explored owing to their superior sensitivity towards NO2, but their high operating temperature (>200 °C) and low selectivity still limit their practical use in sensor devices. In this study, we decorated graphene quantum dots (GQDs) with discrete band gaps onto tin oxide nanodomes (GQD@SnO2 nanodomes), enabling room temperature (RT) sensing towards 5 ppm NO2 gas with a noticeable response ((Ra/Rg) - 1 = 4.8), which cannot be matched using pristine SnO2 nanodomes. In addition, the GQD@SnO2 nanodome based gas sensor shows an extremely low detection limit of 1.1 ppb and high selectivity compared to other pollutant gases (H2S, CO, C7H8, NH3, and CH3COCH3). The oxygen functional groups in GQDs specifically enhance NO2 accessibility by increasing the adsorption energy. Strong electron transfer from SnO2 to GQDs widens the electron depletion layer at SnO2, thereby improving the gas response over a broad temperature range (RT-150 °C). This result provides a basic perspective for utilizing zero-dimensional GQDs in high-performance gas sensors operating over a wide range of temperatures.

7.
J Nanosci Nanotechnol ; 12(4): 3496-500, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849154

RESUMO

We report a novel process that uses highly ordered colloidal templating to fabricate nanostructured TiO2 thin film gas sensors. An O2 plasma treatment is used to decrease the contact angle of a water droplet on a SiO2/Si substrate from 46 degrees to 3 degrees. The formation of this hydrophilic surface enhances the adhesion of polystyrene microspheres to the substrate during the spin coating of the colloidal solution, leading to a large-area colloid template of closely packed monolayer microspheres on the substrates. Embossed TiO2 thin film gas sensors fabricated through highly ordered colloidal templating using O2 plasma exhibit substantially enhanced gas sensing performance as compared to those without surface treatments prior to colloidal templating.

8.
Materials (Basel) ; 15(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431401

RESUMO

A BaMoO4:[Er3+]/[Yb3+] up-conversion (UC) phosphor was synthesized by co-precipitation and calcination of the precursor at 800 °C. The main peak (112) for the synthesized phosphor was strongly detected in the XRD pattern and had a tetragonal structure. The doping of rare-earth ions affected the crystal lattice by shifting the main peak, decreasing the lattice constant, and shifting the position of the Raman signal. The synthesized upconverted phosphor exhibited strong green signals at 530 and 553 nm and weak red signals at 657 nm when excited at 980 nm. The green light emission intensity of the UC phosphor increased as the pump power of the laser increased due to the two-photon effect. The synthesized upconverted phosphor was prepared as a pellet and flexible composite. Thermal quenching led to a decrease in luminescence intensity as the temperature increased, which means that the phosphor can be applied to optical temperature sensing.

9.
Small Methods ; 5(12): e2100941, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928023

RESUMO

For the last several years, indoor air quality monitoring has been a significant issue due to the increasing time portion of indoor human activities. Especially, the early detection of volatile organic compounds potentially harmful to the human body by the prolonged exposure is the primary concern for public human health, and such technology is imperatively desired. In this study, highly porous and periodic 3D TiO2 nanostructures are designed and studied for this concern. Specifically, extremely high gas molecule accessibility throughout the whole nanostructures and precisely controlled internecks of 3D TiO2 nanostructures can achieve an unprecedented gas response of 299 to 50 ppm CH3 COCH3 with an extremely fast response time of less than 1s. The systematic approach to utilize the whole inner and outer surfaces of the gas sensing materials and periodically formed internecks to localize the current paths in this study can provide highly promising perspectives to advance the development of chemoresistive gas sensors using metal oxide nanostructures for the Internet of Everything application.


Assuntos
Acetona/análise , Técnicas Biossensoriais/métodos , Titânio/química , Técnicas Biossensoriais/instrumentação , Humanos , Nanoestruturas , Porosidade , Propriedades de Superfície
10.
Adv Sci (Weinh) ; 8(3): 2001883, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552851

RESUMO

One of the well-known strategies for achieving high-performance light-activated gas sensors is to design a nanostructure for effective surface responses with its geometric advances. However, no study has gone beyond the benefits of the large surface area and provided fundamental strategies to offer a rational structure for increasing their optical and chemical performances. Here, a new class of UV-activated sensing nanoarchitecture made of highly periodic 3D TiO2, which facilitates 55 times enhanced light absorption by confining the incident light in the nanostructure, is prepared as an active gas channel. The key parameters, such as the total 3D TiO2 film and thin-shell thicknesses, are precisely optimized by finite element analysis. Collectively, this fundamental design leads to ultrahigh chemoresistive response to NO2 with a theoretical detection limit of ≈200 ppt. The demonstration of high responses with visible light illumination proposes a future perspective for light-activated gas sensors based on semiconducting oxides.

11.
Materials (Basel) ; 13(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961668

RESUMO

Barium tungstate (BaWO4) powders with various sintering temperatures, and BaWO4:Dy3+ phosphor samples with concentrations of different rare-earth (RE) activator ions (Dy3+, Sm3+, Tb3+) were prepared through co-precipitation. The structural, morphological, and photoluminescent characteristics of barium tungstate phosphors depend on the concentration of RE ions. The crystallographic characteristics of the synthesized BaWO4 were analyzed using X-ray diffraction (XRD) patterns. The size and shape of the crystalline particles were estimated based on images measured with a field emission scanning electron microscope (FE-SEM). As the sintering temperature of the BaWO4 particles increased from 400 °C to 1000 °C, the size of the particles gradually increased and showed a tendency to clump together. In the sample doped with 7 mol % Dy3+ ions, the intensity of all emission bands reached their maximum. The emission spectra of the RE3+-doped BaWO4 powders by excitation at 325 nm were composed of yellow (Dy3+), red (Sm3+), and green (Tb3+) band at 572, 640, and 544 nm. This indicates that most of the RE3+ ions absorbed the position without reversal symmetry in the BaWO4 lattice. These results propose that strong emission intensity and tunable color for the phosphors can be accomplished by rare-earth doped host with an suitable quantity. In addition, the phosphor thin films, having high transparency from aqueous colloidal solutions, were deposited on banknotes, and it is considered whether it is suitable for anti-counterfeiting applications.

12.
Adv Sci (Weinh) ; 7(11): 1903708, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537413

RESUMO

The realization of high-contrast modulation in optically transparent media is of great significance for emerging mechano-responsive smart windows. However, no study has provided fundamental strategies for maximizing light scattering during mechanical deformations. Here, a new type of 3D nanocomposite film consisting of an ultrathin (≈60 nm) Al2O3 nanoshell inserted between the elastomers in a periodic 3D nanonetwork is proposed. Regardless of the stretching direction, numerous light-scattering nanogaps (corresponding to the porosity of up to ≈37.4 vol%) form at the interfaces of Al2O3 and the elastomers under stretching. This results in the gradual modulation of transmission from ≈90% to 16% at visible wavelengths and does not degrade with repeated stretching/releasing over more than 10 000 cycles. The underlying physics is precisely predicted by finite element analysis of the unit cells. As a proof of concept, a mobile-app-enabled smart window device for Internet of Things applications is realized using the proposed 3D nanocomposite with successful expansion to the 3 × 3 in. scale.

13.
ACS Sens ; 4(3): 678-686, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30799610

RESUMO

In order to develop high performance chemoresistive gas sensors for Internet of Everything applications, low power consumption should be achieved due to the limited battery capacity of portable devices. One of the most efficient ways to reduce power consumption is to lower the operating temperature to room temperature. Herein, we report superior gas sensing properties of SnS2 nanograins on SiO2 nanorods toward NO2 at room temperature. The gas response is as high as 701% for 10 ppm of NO2 with excellent recovery characteristics and the theoretical detection limit is evaluated to be 408.9 ppb at room temperature, which has not been reported for SnS2-based gas sensors to the best of our knowledge. The SnS2 nanograins on the template used in this study have excessive sulfur component (Sn:S = 1:2.33) and exhibit p-type conduction behavior. These results will provide a new perspective of nanostructured two-dimensional materials for gas sensor applications on demand.


Assuntos
Técnicas de Química Analítica/instrumentação , Limite de Detecção , Dióxido de Nitrogênio/análise , Dióxido de Silício/química , Sulfetos/química , Temperatura , Compostos de Estanho/química , Modelos Moleculares , Conformação Molecular , Dióxido de Nitrogênio/química , Porosidade
14.
ACS Appl Mater Interfaces ; 11(7): 7529-7538, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30672291

RESUMO

Morphological evolution accompanying a surface roughening and preferred orientation is an effective way to realize a high-performance gas sensor because of its significant potential as a chemical catalyst through chemical potentials and atomic energy states. In this work, we investigated a heterojunction of double-side-W-decorated NiO nanoigloos fabricated through radio frequency sputtering and a soft-template method. Interestingly, a morphological evolution characterized by a pyramidal rough surface and the preferred orientation of the (111) plane was observed upon decorating the bare NiO nanoigloos with W. The underlying mechanism of the morphological evolution was precisely demonstrated based on the van der Drift competitive growth model originating from the oxygen transport and chemical strain in the lattice. The gas sensing properties of W-decorated NiO show an excellent NO2 response and selectivity when compared to other gases. In addition, high response stability was evaluated under interference gas and humidity conditions. The synergistic effects on the sensing performance were interpreted on the basis of the morphological evolution of W-decorated NiO nanoigloos.

15.
ACS Appl Mater Interfaces ; 10(37): 31594-31602, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136839

RESUMO

The utilization of edge sites in two-dimensional materials including transition-metal dichalcogenides (TMDs) is an effective strategy to realize high-performance gas sensors because of their high catalytic activity. Herein, we demonstrate a facile strategy to synthesize the numerous edge sites of vertically aligned MoS2 and larger surface area via SiO2 nanorod (NRs) platforms for highly sensitive NO2 gas sensor. The SiO2 NRs encapsulated by MoS2 film with numerous edge sites and partially vertical-aligned regions synthesized using simple thermolysis process of [(NH4)2MoS4]. Especially, the vertically aligned MoS2 prepared on 500 nm thick SiO2 NRs (500MoS2) shows approximately 90 times higher gas-sensing response to 50 ppm NO2 at room temperature than the MoS2 film prepared on flat SiO2, and the theoretical detection limit is as low as ∼2.3 ppb. Additionally, it shows reliable operation with reversible response to NO2 gas without degradation at an operating temperature of 100 °C. The use of the proposed facile approach to synthesize vertically aligned TMDs using nanostructured platform can be extended for various TMD-based devices including sensors, water splitting catalysts, and batteries.

16.
ACS Appl Mater Interfaces ; 10(1): 1050-1058, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29235841

RESUMO

The utilization of p-p isotype heterojunctions is an effective strategy to enhance the gas sensing properties of metal-oxide semiconductors, but most previous studies focused on p-n heterojunctions owing to their simple mechanism of formation of depletion layers. However, a proper choice of isotype semiconductors with appropriate energy bands can also contribute to the enhancement of the gas sensing performance. Herein, we report nickel oxide (NiO)-decorated cobalt oxide (Co3O4) nanorods (NRs) fabricated using the multiple-step glancing angle deposition method. The effective decoration of NiO on the entire surface of Co3O4 NRs enabled the formation of numerous p-p heterojunctions, and they exhibited a 16.78 times higher gas response to 50 ppm of C6H6 at 350 °C compared to that of bare Co3O4 NRs with the calculated detection limit of approximately 13.91 ppb. Apart from the p-p heterojunctions, increased active sites owing to the changes in the orientation of the exposed lattice surface and the catalytic effects of NiO also contributed to the enhanced gas sensing properties. The advantages of p-p heterojunctions for gas sensing applications demonstrated in this work will provide a new perspective of heterostructured metal-oxide nanostructures for sensitive and selective gas sensing.

17.
Adv Mater ; 29(15)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28117501

RESUMO

Graphene oxide (GO) is reduced spontaneously when palladium nanoparticles are decorated on the surface. The oxygen functional groups at the GO surface near the nanoparticles are absorbed to the palladium to produce a palladium oxide interlayer. Palladium therefore grows on the GO with preferred orientations, resulting in unique microstructural and electrical properties.

18.
Ann Pediatr Endocrinol Metab ; 21(2): 81-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27462584

RESUMO

PURPOSE: We studied the changes in subtypes of diabetes mellitus (DM) in children and evaluated the characteristics of each group over the past 20 years. In addition, we also examined the correlation between the glycated hemoglobin (HbA1c) values at the time of diagnosis and lipid profiles. METHODS: The patients were divided into 2 groups: there were a total of 190 patients under 20 years of age firstly diagnosed with DM in Ajou University Hospital. The patients in groups I and II were diagnosed from September 1995 to December 2004 and from January 2005 to April 2014, respectively. RESULTS: The characteristics were compared between the 2 groups of patients. The result showed an increase in percentage of type 2 diabetes and maturity onset diabetes of the young (MODY) patients between the 2 groups. HbA1c and total cholesterol level had statistical significances to explain increasing the low-density lipoprotein cholesterol level among age, HbA1c, total cholesterol level, and z-scores of weight and body mass index (BMI) in type 2 diabetes. R-square was 0.074. However, z-score of BMI and total cholesterol level, not HbA1c, had statistical significances in type 1 diabetic patients. R-square was 0.323. CONCLUSION: The increase in the proportions of both type 2 diabetes and MODY in the last 10 years needed to be reminded when diagnosing the subtypes of DM, and the dyslipidemia should be attended more as a common problem of pediatric diabetic patients.

19.
ACS Appl Mater Interfaces ; 8(32): 20969-76, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27456161

RESUMO

Detection of gas-phase chemicals finds a wide variety of applications, including food and beverages, fragrances, environmental monitoring, chemical and biochemical processing, medical diagnostics, and transportation. One approach for these tasks is to use arrays of highly sensitive and selective sensors as an electronic nose. Here, we present a high performance chemiresistive electronic nose (CEN) based on an array of metal oxide thin films, metal-catalyzed thin films, and nanostructured thin films. The gas sensing properties of the CEN show enhanced sensitive detection of H2S, NH3, and NO in an 80% relative humidity (RH) atmosphere similar to the composition of exhaled breath. The detection limits of the sensor elements we fabricated are in the following ranges: 534 ppt to 2.87 ppb for H2S, 4.45 to 42.29 ppb for NH3, and 206 ppt to 2.06 ppb for NO. The enhanced sensitivity is attributed to the spillover effect by Au nanoparticles and the high porosity of villi-like nanostructures, providing a large surface-to-volume ratio. The remarkable selectivity based on the collection of sensor responses manifests itself in the principal component analysis (PCA). The excellent sensing performance indicates that the CEN can detect the biomarkers of H2S, NH3, and NO in exhaled breath and even distinguish them clearly in the PCA. Our results show high potential of the CEN as an inexpensive and noninvasive diagnostic tool for halitosis, kidney disorder, and asthma.


Assuntos
Nariz Eletrônico , Biomarcadores , Testes Respiratórios , Nanoestruturas , Óxidos
20.
ACS Appl Mater Interfaces ; 8(36): 23793-800, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27551887

RESUMO

Vertically ordered hematite nanotubes are considered to be promising photoactive materials for high-performance water-splitting photoanodes. However, the synthesis of hematite nanotubes directly on conducting substrates such as fluorine-doped tin oxide (FTO)/glass is difficult to be achieved because of the poor adhesion between hematite nanotubes and FTO/glass. Here, we report the synthesis of hematite nanotubes directly on FTO/glass substrate and high-performance photoelectrochemical properties of the nanotubes with NiFe cocatalysts. The hematite nanotubes are synthesized by a simple electrochemical anodization method. The adhesion of the hematite nanotubes to the FTO/glass substrate is drastically improved by dipping them in nonpolar cyclohexane prior to postannealing. Bare hematite nanotubes show a photocurrent density of 1.3 mA/cm(2) at 1.23 V vs a reversible hydrogen electrode, while hematite nanotubes with electrodeposited NiFe cocatalysts exhibit 2.1 mA/cm(2) at 1.23 V which is the highest photocurrent density reported for hematite nanotubes-based photoanodes for solar water splitting. Our work provides an efficient platform to obtain high-performance water-splitting photoanodes utilizing earth-abundant hematite and noble-metal-free cocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA