Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17434, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867501

RESUMO

Fem is a W-linked gene that encodes a piRNA precursor, and its product, Fem piRNA, is a master factor of female determination in Bombyx mori. Fem has low similarity to any known sequences, and the origin of Fem remains unclear. So far, two hypotheses have been proposed for the origin of Fem: The first hypothesis is that Fem is an allele of Masc, which assumes that the W chromosome was originally a homologous chromosome of the Z chromosome. The second hypothesis is that Fem arose by the transposition of Masc to the W chromosome. To explore the origin of Fem, we determined the W chromosome sequences of B. mori and, as a comparison, a closely relative bombycid species of Trilocha varians with a Fem-independent sex determination system. To our surprise, although the sequences of W and Z chromosomes show no homology to each other, a few pairs of homologues are shared by W and Z chromosomes, indicating the W chromosome of both species originated from Z chromosome. In addition, the W chromosome of T. varians lacks Fem, while the W chromosome of B. mori has over 100 copies of Fem. The high-quality assembly of the W chromosome of B. mori arose the third hypothesis about the origin of Fem: Fem is a chimeric sequence of multiple transposons. More than half of one transcriptional unit of Fem shows a significant homology to RTE-BovB. Moreover, the Fem piRNA-producing region could correspond to the boundary of the two transposons, gypsy and satellite DNA.

2.
Mol Biol Evol ; 38(7): 2897-2914, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33739418

RESUMO

Horizontal gene transfer (HGT) is a potentially critical source of material for ecological adaptation and the evolution of novel genetic traits. However, reports on posttransfer duplication in organism genomes are lacking, and the evolutionary advantages conferred on the recipient are generally poorly understood. Sucrase plays an important role in insect physiological growth and development. Here, we performed a comprehensive analysis of the evolution of insect ß-fructofuranosidase transferred from bacteria via HGT. We found that posttransfer duplications of ß-fructofuranosidase were widespread in Lepidoptera and sporadic occurrences of ß-fructofuranosidase were found in Coleoptera and Hymenoptera. ß-fructofuranosidase genes often undergo modifications, such as gene duplication, differential gene loss, and changes in mutation rates. Lepidopteran ß-fructofuranosidase gene (SUC) clusters showed marked divergence in gene expression patterns and enzymatic properties in Bombyx mori (moth) and Papilio xuthus (butterfly). We generated SUC1 mutations in B. mori using CRISPR/Cas9 to thoroughly examine the physiological function of SUC. BmSUC1 mutant larvae were viable but displayed delayed growth and reduced sucrase activities that included susceptibility to the sugar mimic alkaloid found in high concentrations in mulberry. BmSUC1 served as a critical sucrase and supported metabolic homeostasis in the larval midgut and silk gland, suggesting that gene transfer of ß-fructofuranosidase enhanced the digestive and metabolic adaptation of lepidopteran insects. These findings highlight not only the universal function of ß-fructofuranosidase with a link to the maintenance of carbohydrate metabolism but also an underexplored function in the silk gland. This study expands our knowledge of posttransfer duplication and subsequent functional diversification in the adaptive evolution and lineage-specific adaptation of organisms.


Assuntos
Evolução Biológica , Duplicação Gênica , Transferência Genética Horizontal , Lepidópteros/genética , beta-Frutofuranosidase/genética , Animais , Feminino , Homeostase , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lepidópteros/enzimologia , Masculino , Sacarase/metabolismo
3.
Nature ; 509(7502): 633-6, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24828047

RESUMO

The silkworm Bombyx mori uses a WZ sex determination system that is analogous to the one found in birds and some reptiles. In this system, males have two Z sex chromosomes, whereas females have Z and W sex chromosomes. The silkworm W chromosome has a dominant role in female determination, suggesting the existence of a dominant feminizing gene in this chromosome. However, the W chromosome is almost fully occupied by transposable element sequences, and no functional protein-coding gene has been identified so far. Female-enriched PIWI-interacting RNAs (piRNAs) are the only known transcripts that are produced from the sex-determining region of the W chromosome, but the function(s) of these piRNAs are unknown. Here we show that a W-chromosome-derived, female-specific piRNA is the feminizing factor of B. mori. This piRNA is produced from a piRNA precursor which we named Fem. Fem sequences were arranged in tandem in the sex-determining region of the W chromosome. Inhibition of Fem-derived piRNA-mediated signalling in female embryos led to the production of the male-specific splice variants of B. mori doublesex (Bmdsx), a gene which acts at the downstream end of the sex differentiation cascade. A target gene of Fem-derived piRNA was identified on the Z chromosome of B. mori. This gene, which we named Masc, encoded a CCCH-type zinc finger protein. We show that the silencing of Masc messenger RNA by Fem piRNA is required for the production of female-specific isoforms of Bmdsx in female embryos, and that Masc protein controls both dosage compensation and masculinization in male embryos. Our study characterizes a single small RNA that is responsible for primary sex determination in the WZ sex determination system.


Assuntos
Bombyx/genética , RNA Interferente Pequeno/genética , Caracteres Sexuais , Processos de Determinação Sexual/genética , Processamento Alternativo/genética , Animais , Sequência de Bases , Bombyx/embriologia , Mecanismo Genético de Compensação de Dose , Feminino , Masculino , Dados de Sequência Molecular , Cromossomos Sexuais/genética
4.
Planta ; 251(1): 29, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802247

RESUMO

MAIN CONCLUSION: A novel allele of the sugary-1 rice mutant was isolated. The single amino acid change led to isoamylase activity reduction and accumulation of high-molecular-weight phytoglycogen in seeds. A new sugary rice variety with an improved seed appearance has been isolated and designated Hemisugary1. This mutant, which was derived from Japonica-type cultivar Tsugaruroman treated with sodium azide, has about half the isoamylase activity of seeds in the original Tsugaruroman. The mutant also accumulates significant phytoglycogen, albeit approximately 40% of the total phytoglycogen in the existing sugary cultivar Ayunohikari which is defective in its most isoamylase activity. The site of mutation was identified using a re-sequence of the whole genome and a cleaved amplified polymorphic sequence (CAPS) marker. The hemisugary phenotypes of the F2 progeny were entirely consistent with the results of genotyping using the CAPS marker. Segregation analysis of the F2 population showed that the hemisugary phenotype was controlled by a single recessive gene, which was produced by a G → A single nucleotide polymorphism in the sugary-1 gene, resulting in a missense mutation from glycine to aspartic acid at amino acid position 333. Zymogram showed that this amino acid replacement resulted in a decrease in isoamylase activity with a concomitant reduction in the formation of isoamylase complexes. Phytoglycogen molecules from Hemisugary1 seeds were 3.5 times larger and contained more short glucan chains than did Ayunohikari seeds. Our data provide new insights into the relationship between isoamylase structure and phytoglycogen formation.


Assuntos
Alelos , Genes de Plantas , Mutação/genética , Oryza/genética , Açúcares/metabolismo , Sequência de Bases , Segregação de Cromossomos/genética , Glucanos/metabolismo , Glucose/metabolismo , Modelos Moleculares , Oryza/enzimologia , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/anatomia & histologia , Sementes/enzimologia , Solubilidade , Água/química
5.
RNA ; 23(1): 86-97, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27777367

RESUMO

PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.


Assuntos
Bombyx/genética , Ovário/citologia , RNA Interferente Pequeno/genética , Animais , Linhagem Celular , Células Cultivadas , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ovário/metabolismo
6.
Mol Ecol ; 28(24): 5282-5298, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31674075

RESUMO

Gene duplication provides a major source of new genes for evolutionary novelty and ecological adaptation. However, the maintenance of duplicated genes and their relevance to adaptive evolution has long been debated. Insect trehalase (Treh) plays key roles in energy metabolism, growth, and stress recovery. Here, we show that the duplication of Treh in Lepidoptera (butterflies and moths) is linked with their adaptation to various environmental stresses. Generally, two Treh genes are present in insects: Treh1 and Treh2. We report three distinct forms of Treh in lepidopteran insects, where Treh1 was duplicated into two gene clusters (Treh1a and Treh1b). These gene clusters differ in gene expression patterns, enzymatic properties, and subcellular localizations, suggesting that the enzymes probably underwent sub- and/or neofunctionalization in the lepidopteran insects. Interestingly, selective pressure analysis provided significant evidence of positive selection on duplicate Treh1b gene in lepidopteran insect lineages. Most positively selected sites were located in the alpha-helical region, and several sites were close to the trehalose binding and catalytic sites. Subcellular adaptation of duplicate Treh1b driven by positive selection appears to have occurred as a result of selected changes in specific sequences, allowing for rapid reprogramming of duplicated Treh during evolution. Our results suggest that gene duplication of Treh and subsequent functional diversification could increase the survival rate of lepidopteran insects through various regulations of intracellular trehalose levels, facilitating their adaptation to diverse habitats. This study provides evidence regarding the mechanism by which gene family expansion can contribute to species adaptation through gene duplication and subsequent functional diversification.


Assuntos
Evolução Molecular , Duplicação Gênica/genética , Lepidópteros/genética , Trealase/genética , Animais , Domínio Catalítico , Família Multigênica/genética , Ligação Proteica/genética , Seleção Genética/genética , Trealase/química
7.
Biochem Biophys Res Commun ; 503(3): 1768-1772, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30064911

RESUMO

The Masculinizer gene (Masc) encodes a CCCH tandem zinc finger protein essential for masculinization and dosage compensation in the silkworm Bombyx mori. Previously we identified a Masc orthologue from the crambid Ostrinia furnacalis (OfMasc) and observed its masculinizing activity in the B. mori cultured cell line BmN-4. However, the role of OfMasc in masculinization of O. furnacalis has not been assessed. In this study, we unexpectedly discovered that all of the male larvae that escaped from Wolbachia-induced embryonic male-killing by OfMasc cRNA injection expressed the female-type splicing variants of O. furnacalis doublesex (Ofdsx). To clarify the role of OfMasc in the masculinization process in vivo, we established a system to monitor both sex chromosome- and dsx splicing-based sexes from a single O. furnacalis embryo. Using this system, we investigated the effects of OfMasc knockdown in early embryos on Ofdsx splicing and found that depletion of OfMasc mRNA in male embryos induced the production of the female-type splicing variants of Ofdsx. This result indicates that OfMasc is required for masculinization in O. furnacalis, and that the Masc protein possesses masculinizing activity in an insect species that is phylogenetically distant from Bombycidae.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Proteínas de Insetos/metabolismo , Masculino , Mariposas/embriologia , Cromossomos Sexuais/metabolismo
8.
Genetica ; 146(4-5): 425-431, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30094710

RESUMO

A variety of insects accumulate high contents of riboflavin (vitamin B2) in their Malpighian tubules (MTs). Although this process is known to be genetically controlled, the mechanism is not known. In the 1940s and the 1950s, several studies showed that riboflavin contents were low in the MTs of some Bombyx mori (silkworm) mutants with translucent larval skin mutations (e.g., w-3, od, oa, and otm) and that genes responsible for these translucent mutations also affected riboflavin accumulation in the MTs. Since the 2000s, it has been shown that the w-3 gene encodes an ABC transporter, whereas genes responsible for od, oa, and otm mutations encode for the biogenesis of lysosome-related organelles. These findings suggest that some genes of ABC transporters and biogenesis of lysosome-related organelles may control the accumulation of riboflavin in MTs. Therefore, we reexamined the effects that translucent mutations have on the accumulation of riboflavin in MTs by using the translucent and wild-type segregants in mutant strains to measure the specific effect that each gene has on riboflavin accumulation (independent of genomic background). We used nine translucent mutations (w-3oe, oa, od, otm, Obs, oy, or, oh, and obt) even though the genes responsible for some of these mutations (Obs, oy, or, oh, and obt) have not yet been isolated. Through observation of larval MTs and measurements of riboflavin content using high-performance liquid chromatography, we found that the oa, od, otm, and or mutations were responsible for low contents of riboflavin in MTs, whereas the Obs and oy mutations did not affect riboflavin accumulation. This indicates that the molecular mechanism for riboflavin accumulation is similar but somewhat different than the mechanism responsible for uric acid accumulation in epidermal cells. We found that the genes responsible for oa, od, and otm mutations were consistent with those already established for uric acid accumulation in larval epidermis. This suggests that these three genes control riboflavin accumulation in MTs through a mechanism similar to that of uric acid accumulation, although we do not yet know why the or mutation also controls riboflavin accumulation.


Assuntos
Bombyx/metabolismo , Túbulos de Malpighi/metabolismo , Deficiência de Riboflavina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Bombyx/genética , Proteínas de Insetos/genética , Insetos/genética , Larva/genética , Mutação , Filogenia , Pigmentação/genética , Riboflavina/metabolismo , Análise de Sequência de DNA/métodos
9.
J Insect Sci ; 18(6)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412263

RESUMO

The dominant obese translucent (Obs) mutant of the silkworm (Bombyx mori) results in a short and stout larval body, translucent phenotype, and abnormal pigmentation in the integument. The Obs mutant also displays deficiency in ecdysis and metamorphosis. In the present study, to gain an understanding of multiple Obs phenotypes, we investigated the phenotypes of Obs and performed a comparative analysis of the larval integument proteomes of Obs and normal silkworms. The phenotypic analysis revealed that the Obs larvae were indeed short and fat, and that chitin and uric acid content were lower but melanin content was higher in the Obs mutant. Proteomic analysis revealed that 244 proteins were significantly differentially expressed between Obs and normal silkworms, some of which were involved in uric acid metabolism and melanin pigmentation. Twenty-six proteins were annotated as cuticular proteins, including RR motif-rich cuticular proteins (CPR), glycine-rich cuticular protein (CPG), hypothetical cuticular protein (CPH), cuticular protein analogous to peritrophins (CPAPs), and the chitin_bind_3 motif proteins, and accounted for over 84% of the abundance of the total significantly differentially expressed proteins. Moreover, 22 of the 26 cuticular proteins were downregulated in the Obs mutant. Comparative proteomic analysis suggested that the multiple phenotypes of the Obs mutant might be related to changes in the expression of proteins that participate in cuticular formation, uric acid metabolism, and melanin pigmentation. These results could lay a basis for further identification of the gene responsible for the Obs mutant. The data have been deposited to ProteomeXchange with identifier PXD010998.


Assuntos
Bombyx/genética , Proteoma , Animais , Bombyx/anatomia & histologia , Bombyx/química , Regulação para Baixo , Proteínas de Insetos/genética , Larva , Mutação/genética , Proteômica
10.
PLoS Pathog ; 11(7): e1005048, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172536

RESUMO

Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.


Assuntos
Mariposas/parasitologia , Wolbachia , Animais , Feminino , Masculino , Dados de Sequência Molecular , Mariposas/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Dedos de Zinco/genética
11.
J Biol Chem ; 290(43): 26114-24, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26342076

RESUMO

We have recently discovered that the Masculinizer (Masc) gene encodes a CCCH tandem zinc finger protein, which controls both masculinization and dosage compensation in the silkworm Bombyx mori. In this study, we attempted to identify functional regions or residues that are required for the masculinizing activity of the Masc protein. We constructed a series of plasmids that expressed the Masc derivatives and transfected them into a B. mori ovary-derived cell line, BmN-4. To assess the masculinizing activity of the Masc derivatives, we investigated the splicing patterns of B. mori doublesex (Bmdsx) and the expression levels of B. mori IGF-II mRNA-binding protein, a splicing regulator of Bmdsx, in Masc cDNA-transfected BmN-4 cells. We found that two zinc finger domains are not required for the masculinizing activity. We also identified that the C-terminal 288 amino acid residues are sufficient for the masculinizing activity of the Masc protein. Further detailed analyses revealed that two cysteine residues, Cys-301 and Cys-304, in the highly conserved region among lepidopteran Masc proteins are essential for the masculinizing activity in BmN-4 cells. Finally, we showed that Masc is a nuclear protein, but its nuclear localization is not tightly associated with the masculinizing activity.


Assuntos
Bombyx/metabolismo , Cisteína/metabolismo , Proteínas de Insetos/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Feminino , Proteínas de Insetos/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
12.
Nucleic Acids Res ; 42(18): 11462-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25237056

RESUMO

Heterochromatin protein 1 (HP1) is an evolutionarily conserved protein across different eukaryotic species and is crucial for heterochromatin establishment and maintenance. The silkworm, Bombyx mori, encodes two HP1 proteins, BmHP1a and BmHP1b. In order to investigate the role of BmHP1a in transcriptional regulation, we performed genome-wide analyses of the transcriptome, transcription start sites (TSSs), chromatin modification states and BmHP1a-binding sites of the silkworm ovary-derived BmN4 cell line. We identified a number of BmHP1a-binding loci throughout the silkworm genome and found that these loci included TSSs and frequently co-occurred with neighboring euchromatic histone modifications. In addition, we observed that genes with BmHP1a-associated TSSs were relatively highly expressed in BmN4 cells. RNA interference-mediated BmHP1a depletion resulted in the transcriptional repression of highly expressed genes with BmHP1a-associated TSSs, whereas genes not coupled with BmHP1a-binding regions were less affected by the treatment. These results demonstrate that BmHP1a binds near TSSs of highly expressed euchromatic genes and positively regulates their expression. Our study revealed a novel mode of transcriptional regulation mediated by HP1 proteins.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Eucromatina , Proteínas de Insetos/metabolismo , Sítio de Iniciação de Transcrição , Ativação Transcricional , Animais , Sítios de Ligação , Bombyx , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Genoma de Inseto , Telômero/metabolismo
13.
J Invertebr Pathol ; 136: 50-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953258

RESUMO

Bombyx mori bidensovirus (BmBDV), which causes fatal flacherie disease in the silkworm, replicates only in midgut columnar cells. The viral resistance expressed by some silkworm strains, which is characterized as non-susceptibility irrespective of the viral dose, is determined by a single gene, nsd-2. We previously identified nsd-2 by positional cloning and found that this gene encodes a putative amino acid transporter that might function as a receptor for BmBDV. In this study, we investigated the relationship between the part of the midgut expressing nsd-2 (resistance gene), +(nsd-2) (susceptibility gene) and BmBDV propagation. Quantitative RT-PCR (qRT-PCR) analysis using total RNA isolated from the anterior, middle, and posterior parts of the midgut showed that nsd-2 and +(nsd-2) were strongly expressed in the posterior part of the midgut. The expression levels of both genes were very low in the anterior and middle parts. The qRT-PCR analysis showed that the expression levels of BmBDV-derived transcripts were correlated with the levels of +(nsd-2) expression. However, BmBDV-derived transcripts were clearly detected in all parts of the midgut. These results suggest that the infectivity of BmBDV depends mainly on the expression level of +(nsd-2) in the midgut and that viral infection is supported even by very faint expression of +(nsd-2). By contrast, the expression levels of +(nsd-2) were exceedingly low or undetectable in the middle part of the midgut, indicating that BmBDV infection might occur via another mechanism, independent of +(nsd-2), in the middle part of the midgut.


Assuntos
Bombyx/virologia , Densovirus/patogenicidade , Genes de Insetos/fisiologia , Animais , Western Blotting , Densovirus/fisiologia , Sistema Digestório/microbiologia , Perfilação da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno , Imuno-Histoquímica , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
14.
J Gen Virol ; 96(Pt 7): 1938-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25809914

RESUMO

The actin rearrangement-inducing factor 1 (arif-1) gene is a baculoviral early gene conserved in most alphabaculoviruses. Previous studies reported that Autographa californica nucleopolyhedrovirus ARIF-1 protein induces filamentous actin concentration on the plasma membrane during the early stage of infection in Trichoplusia ni TN-368 cells, but its role in larval infection remains unknown. In this study, we performed behavioural screening using Bombyx mori larvae infected with Bombyx mori nucleopolyhedrovirus (BmNPV) mutants and found that larvae infected with arif-1-mutated BmNPVs did not show locomotor hyperactivity that was normally observed in BmNPV-infected larvae. arif-1-deficient BmNPVs also showed reduced pathogenicity and total viral propagation in B. mori larvae, whereas viral propagation of arif-1-deficient viruses was comparable with that of control viruses in B. mori cultured cells. An arif-1-defective BmNPV expressing the GFP gene (gfp) was used to monitor the progression of infection in B. mori larvae. GFP expression and quantitative reverse transcription-PCR analyses revealed that infection by the arif-1-disrupted virus was significantly delayed in trachea, fat body, suboesophageal ganglion and brain. These results indicated that BmNPV ARIF-1 enhanced systemic infection in B. mori larvae.


Assuntos
Actinas/metabolismo , Bombyx/virologia , Interações Hospedeiro-Patógeno , Nucleopoliedrovírus/fisiologia , Multimerização Proteica , Proteínas Virais/metabolismo , Animais , Técnicas de Inativação de Genes , Larva/virologia , Locomoção , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/crescimento & desenvolvimento , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Virais/genética , Virulência
15.
Nucleic Acids Res ; 41(3): 1581-90, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23258708

RESUMO

PIWI-interacting RNA (piRNA) clusters act as anti-transposon/retrovirus centers. Integration of selfish jumping elements into piRNA clusters generates de novo piRNAs, which in turn exert trans-silencing activity against these elements in animal gonads. To date, neither genome-wide chromatin modification states of piRNA clusters nor a mode for piRNA precursor transcription have been well understood. Here, to understand the chromatin landscape of piRNA clusters and how piRNA precursors are generated, we analyzed the transcriptome, transcription start sites (TSSs) and the chromatin landscape of the BmN4 cell line, which harbors the germ-line piRNA pathway. Notably, our epigenomic map demonstrated the highly euchromatic nature of unique piRNA clusters. RNA polymerase II was enriched for TSSs that transcribe piRNA precursors. piRNA precursors possessed 5'-cap structures as well as 3'-poly A-tails. Collectively, we envision that the euchromatic, opened nature of unique piRNA clusters or piRNA cluster-associated TSSs allows piRNA clusters to capture new insertions efficiently.


Assuntos
Epigênese Genética , RNA Interferente Pequeno/biossíntese , Linhagem Celular , Cromatina/metabolismo , Histonas/metabolismo , Precursores de RNA/biossíntese , RNA Interferente Pequeno/genética , Sítio de Iniciação de Transcrição , Transcriptoma
16.
J Invertebr Pathol ; 126: 64-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681781

RESUMO

Several lines of evidence have shown that the deletion of the ecdysteroid UDP-glucosyltransferase gene (egt) from the nucleopolyhedrovirus (NPV) genome increases the killing speed of host lepidopteran larvae. However, it has not been investigated in detail whether the effects of egt deletion depend on the larval stages of the host insect. In this study, we performed bioassays using 10 continuous larval stages of the 4th- or 5th-instar Bombyx mori larvae and B. mori NPV egt mutants. The fast-killing phenotype was observed in the egt mutants only when the infection process progressed through larval-larval transition. All day-2 4th-instar larvae infected with the egt mutants entered the molting stage and died much earlier than wild-type-infected larvae. Bodies of egt mutant-infected larvae were filled with excessive fluid immediately after head capsule slippage, owing presumably to the degeneration of Malpighian tubules. Fourth- or 5th-instar larvae infected with the egt mutants at early stages of each instar died similarly to those infected with the wild-type virus. Under infection in the middle stages of the 5th-instar, the survival time of egt mutant-infected larvae was significantly longer than that of the wild-type virus-infected larvae. These results clearly show that the effects of egt deletion on killing speed of NPV are largely dependent on the developmental stage of the host larvae infected by the virus.


Assuntos
Bombyx/virologia , Deleção de Genes , Glucosiltransferases/genética , Nucleopoliedrovírus/fisiologia , Proteínas Virais/genética , Animais , Bombyx/crescimento & desenvolvimento , Linhagem Celular , Larva/crescimento & desenvolvimento , Larva/virologia , Estágios do Ciclo de Vida , Nucleopoliedrovírus/patogenicidade , Fatores de Tempo , Virulência/genética
17.
PLoS Genet ; 8(3): e1002486, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412378

RESUMO

Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.


Assuntos
Bombyx/genética , Sistema Enzimático do Citocromo P-450/genética , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Larva/genética , Metamorfose Biológica/genética , Animais , Animais Geneticamente Modificados , Bombyx/crescimento & desenvolvimento , Corpora Allata/metabolismo , Ecdisteroides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hemolinfa/metabolismo , Hormônios Juvenis/biossíntese , Larva/crescimento & desenvolvimento , Muda/genética , Mutação
18.
J Biol Chem ; 288(19): 13345-55, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23515308

RESUMO

BACKGROUND: The vitellogenin receptor (VgR) mediates the uptake of vitellogenin (Vg) from the hemolymph by developing oocytes. RESULTS: VgR with the mutational EGF1 domain can bind ligand proteins but cannot be dissociated under acidic conditions. The mutant is lethal in embryos. CONCLUSION: Bombyx mori VgR (BmVgR) has an important role in egg formation and embryonic development. SIGNIFICANCE: BmVgR is a potential target for pest control. In insects, the vitellogenin receptor (VgR) mediates the uptake of vitellogenin (Vg) from the hemolymph by developing oocytes. The oogenesis mutant scanty vitellin (vit) of Bombyx mori (Bm) lacks vitellin and 30-kDa proteins, but B. mori egg-specific protein and BmVg are normal. The vit eggs are white and smaller compared with the pale yellow eggs of the wild type and are embryonic lethal. This study found that a mutation in the B. mori VgR gene (BmVgR) is responsible for the vit phenotype. We cloned the cDNA sequences encoding WT and vit BmVgR. The functional domains of BmVgR are similar to those of other low-density lipoprotein receptors. When compared with the wild type, a 235-bp genomic sequence in vit BmVgR is substituted for a 7-bp sequence. This mutation has resulted in a 50-amino acid deletion in the third Class B region of the first epidermal growth factor (EGF1) domain. BmVgR is expressed specifically in oocytes, and the transcriptional level is changed dramatically and consistently with maturation of oocytes during the previtellogenic periods. Linkage analysis confirmed that BmVgR is mutated in the vit mutant. The coimmunoprecipitation assay confirmed that mutated BmVgR is able to bind BmVg but that BmVg cannot be dissociated under acidic conditions. The WT phenotype determined by RNA interference was similar to that of the vit phenotype for nutritional deficiency, such as BmVg and 30-kDa proteins. These results showed that BmVgR has an important role in transporting proteins for egg formation and embryonic development in B. mori.


Assuntos
Bombyx/genética , Proteínas do Ovo/genética , Proteínas de Insetos/genética , Oogênese , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Animais , Bombyx/embriologia , Clonagem Molecular , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Desenvolvimento Embrionário , Feminino , Técnicas de Silenciamento de Genes , Ligação Genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Ovário/embriologia , Óvulo/metabolismo , Óvulo/fisiologia , Fenótipo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Deleção de Sequência , Transcrição Gênica , Vitelinas/metabolismo , Vitelogeninas/metabolismo
19.
Biochem Biophys Res Commun ; 454(4): 581-7, 2014 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-25450697

RESUMO

The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) possesses two genes, iap1 and iap2, which encode inhibitor of apoptosis (IAP) proteins. We previously showed that although both genes are dispensable for viral propagation, iap2 is required for efficient viral propagation in cultured cells. BmNPV IAP2 contains three putative functional domains: a baculovirus IAP repeat (BIR), a BIR-like (BIRL) domain, and a RING finger domain. To identify the domain affecting viral growth, we generated a series of BmNPV bacmids expressing iap2 derivatives lacking one or two domains, or possessing a single amino acid substitution to abolish IAP2 ubiquitin ligase activity. We examined their properties in both cultured cells and B. mori larvae. We found that either the BIR or BIRL domain of IAP2 plays an important role in BmNPV infection, and that the RING finger domain, which is required for ubiquitin ligase activity, does not greatly contribute to BmNPV propagation. This is the first study to identify functional domains of the baculovirus IAP2 protein.


Assuntos
Bombyx/virologia , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Nucleopoliedrovírus/crescimento & desenvolvimento , Nucleopoliedrovírus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Proteínas Inibidoras de Apoptose/genética , Proteínas Virais/genética
20.
Proc Biol Sci ; 281(1774): 20132582, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24258720

RESUMO

The silkmoth Bombyx mori is the main producer of silk worldwide and has furthermore become a model organism in biological research, especially concerning chemical communication. However, the impact domestication might have had on the silkmoth's olfactory sense has not yet been investigated. Here, we show that the pheromone detection system in B. mori males when compared with their wild ancestors Bombyx mandarina seems to have been preserved, while the perception of environmental odorants in both sexes of domesticated silkmoths has been degraded. In females, this physiological impairment was mirrored by a clear reduction in olfactory sensillum numbers. Neurophysiological experiments with hybrids between wild and domesticated silkmoths suggest that the female W sex chromosome, so far known to have the sole function of determining femaleness, might be involved in the detection of environmental odorants. Moreover, the coding of odorants in the brain, which is usually similar among closely related moths, differs strikingly between B. mori and B. mandarina females. These results indicate that domestication has had a strong impact on odour detection and processing in the olfactory model species B. mori.


Assuntos
Bombyx/fisiologia , Olfato/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/ultraestrutura , Bombyx/anatomia & histologia , Bombyx/genética , Cruzamento , Cálcio/metabolismo , Feminino , Microscopia Eletrônica de Varredura , Feromônios/química , Sensilas/ultraestrutura , Cromossomos Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA