Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Blood Press Res ; 43(5): 1409-1424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212831

RESUMO

BACKGROUND/AIMS: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.


Assuntos
Fosfatase Alcalina/fisiologia , Homeostase , Fosfatos/metabolismo , Insuficiência Renal/metabolismo , Fosfatase Alcalina/genética , Animais , Transporte Biológico , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
2.
J Clin Biochem Nutr ; 62(2): 155-160, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29610555

RESUMO

Several environmental factors during the prenatal period transgenerationally affect the health of newborns in later life. Because low-dose antibiotics have been used for promoting the growth of crops and livestock in agriculture, humans may have ingested residual antibiotics for several decades. However, the effect of prenatal administration of low-dose antibiotics on newborns' health in later life is unclear. In the present study, we found that prenatal treatment of murine mothers with low-dose antibiotics increased the abundance of bacteria of the phylum Firmicutes and the genera Clostridium IV and XIVa in feces from pups. In addition, the body fat percentage of mice in the antibiotic-treated group was higher than those in the control group at 12 weeks of age even though all pups were fed a standard diet. The body fat percentage of all mice was correlated with the abundance of fecal bacteria of Clostridium IV and XIVa. These results predict that low-dose antibiotic administration during the prenatal period affects the gut microbiota of newborns and possibly their health in later life.

3.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28784926

RESUMO

Campylobacterjejuni is a foodborne pathogen that induces gastroenteritis. Invasion and adhesion are essential in the process of C. jejuni infection leading to gastroenteritis. The mucosal layer plays a key role in the system of defense against efficient invasion and adhesion by bacteria, which is modulated by several ion channels and transporters mediated by water flux in the intestine. The cystic fibrosis transmembrane conductance regulator (CFTR) plays the main role in water flux in the intestine, and it is closely associated with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells; however, the mechanism and importance of this suppression are unclear. This study sought to elucidate the role of CFTR in C. jejuni infection. Using HEK293 cells that stably express wild-type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion and that it was not involved in bacterial adhesion or intracellular survival but was associated with microtubule-dependent intracellular transport. Moreover, we revealed that CFTR attenuated the function of the microtubule motor protein, which caused inhibition of C. jejuni invasion, but did not affect microtubule stability. Meanwhile, the CFTR mutant G551D-CFTR, which had defects in channel activity, suppressed C. jejuni invasion, whereas the ΔF508-CFTR mutant, which had defects in maturation, did not suppress C. jejuni invasion, suggesting that CFTR suppression of C. jejuni invasion is related to CFTR maturation but not channel activity. When these findings are taken together, it may be seen that mature CFTR inhibits C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni invasion and that suppression of CFTR may be an initial step in promoting cell invasion during C. jejuni infection.


Assuntos
Campylobacter jejuni/patogenicidade , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Microtúbulos/fisiologia , Aderência Bacteriana , Carga Bacteriana , Transporte Biológico , Infecções por Campylobacter/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HEK293 , Humanos , Proteínas Motores Moleculares/metabolismo , Mutação
4.
J Bacteriol ; 197(18): 2958-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148713

RESUMO

UNLABELLED: HU is one of the most abundant nucleoid-associated proteins in bacterial cells and regulates the expression of many genes involved in growth, motility, metabolism, and virulence. It is known that Vibrio parahaemolyticus pathogenicity is related to its characteristic rapid growth and that type III secretion system 1 (T3SS1) contributes to its cytotoxicity. However, it is not known if HU plays a role in the pathogenicity of V. parahaemolyticus. In the present study, we investigated the effect of HU proteins HU-2 (HUα) (V. parahaemolyticus 2911 [vp2911]) and HUß (vp0920) on the pathogenicity of V. parahaemolyticus. We found that a deletion of both HU subunits (yielding the ΔHUs [Δvp0920 Δvp2911] strain), but not single deletions, led to a reduction of the growth rate. In addition, expression levels of T3SS1-related genes, including exsA (positive regulator), exsD (negative regulator), vp1680 (cytotoxic effector), and vp1671 (T3SS1 apparatus), were reduced in the ΔHUs strain compared to the wild type (WT). As a result, cytotoxicity to HeLa cells was decreased in the ΔHUs strain. The additional deletion of exsD in the ΔHUs strain restored T3SS1-related gene expression levels and cytotoxicity but not the growth rate. These results suggest that the HU protein regulates the levels of T3SS1 gene expression and cytotoxicity in a growth rate-independent manner. IMPORTANCE: Nucleoid-binding protein HU regulates cellular behaviors, including nucleoid structuring, general recombination, transposition, growth, replication, motility, metabolism, and virulence. It is thought that both the number of bacteria and the number of virulence factors may affect the pathogenicity of bacteria. In the present study, we investigated which factor(s) has a dominant role during infection in one of the most rapidly growing bacterial species, Vibrio parahaemolyticus. We found that V. parahaemolyticus cytotoxicity is regulated, in a growth rate-independent manner, by the HU proteins through regulation of a number of virulence factors, including T3SS1 gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Células HeLa , Humanos , Vibrio parahaemolyticus/genética
5.
Circ J ; 78(8): 1980-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24859498

RESUMO

BACKGROUND: Left atrial (LA) thrombosis is an important cause of systemic embolization. The SPORTS rat model of LA thrombi (Spontaneously-Running Tokushima-Shikoku), which have a unique characteristic of high voluntary wheel running, was previously established. The aim of the present study was to investigate how SPORTS rats develop LA thrombi. METHODS AND RESULTS: Nitric oxide (NO) produced from cardiovascular endothelial cells plays an important protective role in the local regulation of blood flow, vascular tone, and platelet aggregation. No evidence of atrial fibrillation or hypercoagulability in SPORTS rats regardless of age was found; however, SPORTS rats demonstrated endothelial dysfunction and a decrease of NO production from a young age. In addition, endothelial NO synthase activity was significantly decreased in the LA and thoracic aorta endothelia of SPORTS rats. While voluntary wheel running was able to intermittently increase NO levels, running did not statistically decrease the incidence of LA thrombi at autopsy. However, L-arginine treatment significantly increased NO production and provided protection from the development of LA thrombi in SPORTS rats. CONCLUSIONS: They present study results indicate that NO has an important role in the development of LA thrombus, and endothelia pathways could provide new targets of therapy to prevent LA thrombosis.


Assuntos
Endotélio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Trombose/metabolismo , Animais , Modelos Animais de Doenças , Endotélio/patologia , Feminino , Átrios do Coração/metabolismo , Masculino , Ratos , Trombose/patologia
6.
J Infect Chemother ; 20(11): 682-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25107576

RESUMO

Campylobacter jejuni causes foodborne disease associated with abdominal pain, gastroenteritis, and diarrhea. These symptoms are induced by bacterial adherence and invasion of host epithelial cells. C. jejuni infection can occur with a low infective dose, suggesting that C. jejuni may have evolved strategies to cope with the bacterial clearance system in the gastrointestinal tract. The mucosa layer is the first line of defense against bacteria. Mucus conditions are maintained by water and anion (especially Cl(-)) movement. Cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl(-) channel transporting Cl(-) to the lumen. Mutations in CFTR result in dehydrated secreted mucus and bacterial accumulation in the lungs, and recent studies suggest that closely related pathogenic bacteria also may survive in the intestine. However, the relationship between C. jejuni infection and CFTR has been little studied. Here, we used an (125)I(-) efflux assay and measurement of short-circuit current to measure Cl(-) secretion in C. jejuni-infected T-84 human intestinal epithelial cells. The basic state of Cl(-) secretion was unchanged by C. jejuni infection, but CFTR activator was observed to induce Cl(-) secretion suppressed in C. jejuni-infected T-84 cells. The suppression of activated Cl(-) secretion was bacterial dose-dependent and duration-dependent. A similar result was observed during infection with other C. jejuni strains. The mechanism of suppression may occur by affecting water movement or mucus condition in the intestinal tract. A failure of mucus barrier function may promote bacterial adhesion or invasion of host intestinal epithelial cells, thereby causing bacterial preservation in the host intestinal tract.


Assuntos
Infecções por Campylobacter/metabolismo , Campylobacter jejuni , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Trifosfato de Adenosina/farmacologia , Benzoatos/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Canais de Cloreto/metabolismo , Colforsina/farmacologia , AMP Cíclico/agonistas , AMP Cíclico/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Tiazolidinas/farmacologia
7.
J Med Invest ; 71(1.2): 102-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735705

RESUMO

Vibrio vulnificus (V. vulnificus) is a halophilic gram-negative bacterium that inhabits coastal warm water and induce severe diseases such as primary septicemia. To investigate the mechanisms of rapid bacterial translocation on intestinal infection, we focused on outer membrane vesicles (OMVs), which are extracellular vesicles produced by Gram-negative bacteria and deliver virulence factors. However, there are very few studies on the pathogenicity or contents of V. vulnificus OMVs (Vv-OMVs). In this study, we investigated the effects of Vv-OMVs on host cells. Epithelial cells INT407 were stimulated with purified OMVs and morphological alterations and levels of lactate dehydrogenase (LDH) release were observed. In cells treated with OMVs, cell detachment without LDH release was observed, which exhibited different characteristics from cytotoxic cell detachment observed in V. vulnificus infection. Interestingly, OMVs from a Vibrio Vulnificus Hemolysin (VVH) and Multifunctional-autoprocessing repeats-in -toxin (MARTX) double-deletion mutant strain also caused cell detachment without LDH release. Our results suggested that the proteolytic function of a serine protease contained in Vv-OMVs may contribute to pathogenicity of V. vulnificus by assisting bacterial translocation. This study reveals a new pathogenic mechanism during V. vulnificus infections. J. Med. Invest. 71 : 102-112, February, 2024.


Assuntos
Vesículas Extracelulares , Vibrio vulnificus , Vibrio vulnificus/patogenicidade , Vibrio vulnificus/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Proteínas Hemolisinas/metabolismo , L-Lactato Desidrogenase/metabolismo , Membrana Externa Bacteriana/metabolismo , Células Epiteliais/microbiologia
8.
J Microorg Control ; 29(2): 91-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880621

RESUMO

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Assuntos
Campylobacter jejuni , Galinhas , Desinfecção , Carne , Hipoclorito de Sódio , Raios Ultravioleta , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/efeitos da radiação , Animais , Hipoclorito de Sódio/farmacologia , Raios Ultravioleta/efeitos adversos , Desinfecção/métodos , Carne/microbiologia , Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microbiologia de Alimentos , Contaminação de Alimentos/prevenção & controle
9.
Biochim Biophys Acta ; 1820(10): 1686-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22771831

RESUMO

BACKGROUND: Reactive oxygen species (ROS), including superoxide anion radical, induce chronic risk of oxidative damage to many cellular macromolecules resulting in damage to cells. Superoxide dismutases (SODs) catalyze the dismutation of superoxide to oxygen and hydrogen peroxide and are a primary defense against ROS. Vibrio parahaemolyticus, a marine bacterium that causes acute gastroenteritis following consumption of raw or undercooked seafood, can survive ROS generated by intestinal inflammatory cells. However, there is little information concerning SODs in V. parahaemolyticus. This study aims to clarify the role of V. parahaemolyticus SODs against ROS. METHODS: V. parahaemolyticus SOD gene promoter activities were measured by a GFP reporter assay. Mutants of V. parahaemolyticus SOD genes were constructed and their SOD activity and resistance to oxidative stresses were measured. RESULTS: Bioinformatic analysis showed that V. parahaemolyticus SODs were distinguished by their metal cofactors, FeSOD (VP2118), MnSOD (VP2860), and CuZnSOD (VPA1514). VP2118 gene promoter activity was significantly higher than the other SOD genes. In a VP2118 gene deletion mutant, SOD activity was significantly decreased and could be recovered by VP2118 gene complementation. The absence of VP2118 resulted in significantly lowered resistance to ROS generated by hydrogen peroxide, hypoxanthine-xanthine oxidase, or Paraquat. Furthermore, both the N- and C-terminal SOD domains of VP2118 were necessary for ROS resistance. CONCLUSION: VP2118 is the primary V. parahaemolyticus SOD and is vital for anti-oxidative stress responses. GENERAL SIGNIFICANCE: The V. parahaemolyticus FeSOD VP2118 may enhance ROS resistance and could promote its survival in the intestinal tract to facilitate host tissue infection.


Assuntos
Proteínas de Bactérias/fisiologia , Estresse Oxidativo/fisiologia , Superóxido Dismutase/fisiologia , Vibrio parahaemolyticus/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Resistência Microbiana a Medicamentos/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Organismos Geneticamente Modificados , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Deleção de Sequência , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Transcrição Gênica , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
10.
Biosci Microbiota Food Health ; 42(3): 203-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404565

RESUMO

Maternal environments affect the health of offspring in later life. Changes in epigenetic modifications may partially explain this phenomenon. The gut microbiota is a critical environmental factor that influences epigenetic modifications of host immune cells and the development of food allergies. However, whether changes in the maternal gut microbiota affect the development of food allergies and related epigenetic modifications in subsequent generations remains unclear. Here, we investigated the effects of antibiotic treatment before pregnancy on the development of the gut microbiota, food allergies, and epigenetic modifications in F1 and F2 mice. We found that pre-conception antibiotic treatment affected the gut microbiota composition in F1 but not F2 offspring. F1 mice born to antibiotic-treated mothers had a lower proportion of butyric acid-producing bacteria and, consequently, a lower butyric acid concentration in their cecal contents. The methylation level in the DNA of intestinal lamina propria lymphocytes, food allergy susceptibility, and production of antigen-specific IgE in the F1 and F2 mice were not different between those born to control and antibiotic-treated mothers. In addition, F1 mice born to antibiotic-treated mothers showed increased fecal excretion related to the stress response in a novel environment. These results suggest that the maternal gut microbiota is effectively passed onto F1 offspring but has little effect on food allergy susceptibility or DNA methylation levels in offspring.

11.
Biology (Basel) ; 12(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38132294

RESUMO

Ketone bodies serve several functions in the intestinal epithelium, such as stem cell maintenance, cell proliferation and differentiation, and cancer growth. Nevertheless, there is limited understanding of the mechanisms governing the regulation of intestinal ketone body concentration. In this study, we elucidated the factors responsible for ketone body production and excretion using shRNA-mediated or pharmacological inhibition of specific genes or functions in the intestinal cells. We revealed that a fasting-mimicked culture medium, which excluded glucose, pyruvate, and glutamine, augmented ketone body production and excretion in the Caco2 and HT29 colorectal cells. This effect was attenuated by glucose or glutamine supplementation. On the other hand, the inhibition of the mammalian target of rapamycin complex1 (mTORC1) recovered a fraction of the excreted ketone bodies. In addition, the pharmacological or shbeclin1-mediated inhibition of autophagy suppressed ketone body excretion. The knockdown of basigin, a transmembrane protein responsible for targeting monocarboxylate transporters (MCTs), such as MCT1 and MCT4, suppressed lactic acid and pyruvic acid excretion but increased ketone body excretion. Finally, we found that MCT7 (SLC16a6) knockdown suppressed ketone body excretion. Our findings indicate that the mTORC1-autophagy axis and MCT7 are potential targets to regulate ketone body excretion from the intestinal epithelium.

12.
mSystems ; 8(2): e0068222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939368

RESUMO

Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.


Assuntos
Toxinas Bacterianas , Vibrioses , Humanos , Toxinas Bacterianas/metabolismo , Vibrioses/microbiologia , Fatores de Virulência/metabolismo , Músculo Esquelético/metabolismo
13.
Mol Nutr Food Res ; 67(9): e2200270, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829302

RESUMO

SCOPE: Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS: Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION: This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.


Assuntos
Relógios Circadianos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Flavonoides/farmacologia , Fígado/metabolismo , Ritmo Circadiano , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo
14.
J Med Invest ; 70(1.2): 260-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164731

RESUMO

BACKGROUND: Inorganic phosphate (Pi) binders are the only pharmacologic treatment approved for hyperphosphatemia. However, Pi binders induce the expression of intestinal Pi transporters and have limited effects on the inhibition of Pi transport. EOS789, a novel pan-Pi transporter inhibitor, reportedly has potent efficacy in treating hyperphosphatemia. We investigated the properties of EOS789 with comparison to a conventional Pi binder. METHODS: Protein and mRNA expression levels of Pi transporters were measured in intestinal and kidney tissues from male Wistar rats fed diets supplemented with EOS789 or lanthanum carbonate (LC). 32Pi permeability was measured in intestinal tissues from normal rats using a chamber. RESULTS: Increased protein levels of NaPi-2b, an intestinal Pi transporter, and luminal Pi removal were observed in rats treated with LC but not in rats treated with EOS789. EOS789 but not LC suppressed intestinal protein levels of the Pi transporter Pit-1 and sodium/hydrogen exchanger isoform 3. 32Pi flux experiments using small intestine tissues from rats demonstrated that EOS789 may affect transcellular Pi transport in addition to paracellular Pi transport. CONCLUSION: EOS789 has differing regulatory effects on Pi metabolism compared to LC. The properties of EOS789 may compensate for the limitations of LC therapy. The combined or selective use of EOS789 and conventional Pi binders may allow tighter control of hyperphosphatemia. J. Med. Invest. 70 : 260-270, February, 2023.


Assuntos
Hiperfosfatemia , Proteínas de Transporte de Fosfato , Ratos , Masculino , Animais , Proteínas de Transporte de Fosfato/metabolismo , Ratos Wistar , Hiperfosfatemia/tratamento farmacológico , Absorção Intestinal , Fosfatos/metabolismo
15.
Can J Microbiol ; 58(8): 1002-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827847

RESUMO

Vibrio parahaemolyticus is a pathogenic Vibrio species that causes food-borne acute gastroenteritis, often related to the consumption of raw or undercooked seafood. Vibrio parahaemolyticus has 2 type III secretion systems (T3SS1 and T3SS2). Here, we demonstrate that VP1657 (VopB1) and VP1656 (VopD1), which share sequence similarity with Pseudomonas genes popB (38%) and popD (36%), respectively, are essential for translocation of T3SS1 effectors into host cells. A VP1680CyaA fusion reporter system was constructed to observe effector translocation. Using this reporter assay we showed that the VopB1 and VopD1 deletion strains were unable to translocate VP1680 to host cell but that the secretion of VP1680 into the culture medium was not affected. VopB1 or VopD1 deletion strains did not enhance cytotoxicity and failed to activate mitogen-activated protein kinases and secretion of interleukin-8, which depend on VP1680. Thus, we conclude that VopB1 and VopD1 are essential components of the translocon. To target VopB1 and VopD1 may have therapeutic potential for the treatment or prevention in V. parahaemolyticus infection.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Proteínas de Bactérias/genética , Ativação Enzimática/genética , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transporte Proteico/genética , Deleção de Sequência
16.
J Infect Dis ; 203(4): 537-44, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21177635

RESUMO

BACKGROUND: Vibrio parahaemolyticus causes acute gastroenteritis and inflammations in humans. A variety of pathogenic bacteria can stimulate mitogen-activated protein kinases (MAPKs) in host cells. Phosphorylation of MAPKs leads to production of interleukin (IL)- 8 and subsequently causes inflammations. Thus, MAPK cascades were strong candidates for the main signaling pathway of V. parahaemolyticus-induced acute inflammation. METHODS: To determine whether the signaling pathway on V. parahaemolyticus infection induces inflammation, we analyzed the secretion level of IL-8 and phosphorylation of MAPKs by use of intestinal epithelial Caco-2 cells. RESULTS: V. parahaemolyticus infection of Caco-2 cells activated extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK signal pathways, leading to IL-8 secretion, whereas MAPK inhibitors, UO126 or SB203580, suppressed IL-8 secretion. A strain carrying a deletion of VP1680, a type three secretion system 1 (T3SS1) effector protein, failed to activate phosphorylation of ERK1/2 and p38 MAPK and secretion of IL-8. ERK1/2 pathway inhibitor, UO126, failed IL-8 promoter activity, whereas p38 MAPK inhibitor, SB203580, decreased the stabilization of IL-8 messenger RNA following V. parahaemolyticus infection. CONCLUSIONS: We showed that V. parahaemolyticus infection of Caco-2 cells results in the secretion of IL-8, and that VP1680 plays a pivotal role in manipulating host cell signaling and is responsible for triggering IL-8 secretion.


Assuntos
Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Vibrio parahaemolyticus/imunologia , Vibrio parahaemolyticus/patogenicidade , Proteínas Virais/imunologia , Fatores de Virulência/imunologia , Células CACO-2 , Humanos , Fosforilação
17.
J Nutr Sci Vitaminol (Tokyo) ; 68(3): 204-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35768251

RESUMO

Taste receptor type 1 member 3 (T1R3) recognize umami or sweet tastes and also contributes type 2 immunity and autophagy in small intestine and muscle cells, respectively. Since imbalance of type 1 and type 2 immunity and autophagy affect intestinal bowel disease (IBD), we hypothesized that T1R3 have a potential role in the incidence and progression of colitis. In the present study, we investigated whether genetic deletion of T1R3 impacted aggravation of DSS-induced colitis in mice. We found that T1R3-KO mice showed reduction in colon damage, including reduced inflammation and colon shrinking relative to those of WT mice following DSS treatment. mRNA expression of tight junction components, particularly claudin1 was significantly lower in T1R3-KO mice with trend to lower inflammation related gene mRNA expression in colon. Other parameters, such as response to microbial stimuli in splenic lymphocytes and peritoneal macrophages, gut microbiota composition, and expression of autophagy-related proteins, were similar between WT and KO mice. Together, these results indicated that deletion of T1R3 has a minor role in intestinal inflammation induced by DSS-induced acute colitis in mice.


Assuntos
Colite , Paladar , Animais , Colite/induzido quimicamente , Colite/genética , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Deleção de Genes , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo
18.
Front Cell Infect Microbiol ; 12: 829682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310852

RESUMO

Campylobacter jejuni is a leading cause of food-borne disease worldwide. The pathogenicity of C. jejuni is closely associated with the internalization process in host epithelial cells, which is related to a host immune response. Autophagy indicates a key role in the innate immune system of the host to exclude invasive pathogens. Most bacteria are captured by autophagosomes and degraded by autophagosome-lysosome fusion in host cells. However, several pathogens, such as Salmonella and Shigella, avoid and/or escape autophagic degradation to establish infection. But autophagy involvement as a host immune response to C. jejuni infection has not been clarified. This study revealed autophagy association in C. jejuni infection. During infection, C. jejuni activated the Rho family small GTPase Rac1 signaling pathway, which modulates actin remodeling and promotes the internalization of this pathogen. In this study, we found the LC3 contribution to C. jejuni invasion signaling via the Rac1 signaling pathway. Interestingly, during C. jejuni invasion, LC3 was recruited to bacterial entry site depending on Rac1 GTPase activation just at the early step of the infection. C. jejuni infection induced LC3-II conversion, and autophagy induction facilitated C. jejuni internalization. Also, autophagy inhibition attenuated C. jejuni invasion step. Moreover, Rac1 recruited LC3 to the cellular membrane, activating the invasion of C. jejuni. Altogether, our findings provide insights into the new function of LC3 in bacterial invasion. We found the interaction between the Rho family small GTPase, Rac1, and autophagy-associated protein, LC3.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Proteínas Associadas aos Microtúbulos , Proteínas rac1 de Ligação ao GTP , Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/metabolismo , Células Epiteliais/microbiologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Virulência , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Photochem Photobiol B ; 228: 112410, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35193038

RESUMO

Herpes simplex virus type 1 (HSV-1) is an enveloped virus that mainly infects humans. Given its high global prevalence, disinfection is critical for reducing the risk of infection. Ultraviolet-light-emitting diodes (UV-LEDs) are eco-friendly irradiating modules with different peak wavelengths, but the molecules degraded by UV-LED irradiation have not been clarified. To identify the target viral molecules of UV-LEDs, we exposed HSV-1 suspensions to UV-LED irradiation at wavelengths of 260-, 280-, 310-, and 365-nm and measured viral DNA, protein, and lipid damage and infectivity in host cells. All UV-LEDs substantially reduced by inhibiting host cell transcription, but 260- and 280-nm UV-LEDs had significantly stronger virucidal efficiency than 310- and 365-nm UV-LEDs. Meanwhile, 260- and 280-nm UV-LEDs induced the formation of viral DNA photoproducts and the degradation of viral proteins and some phosphoglycerolipid species. Unlike 260- and 280-nm UV-LEDs, 310- and 365-nm UV-LEDs decreased the viral protein levels, but they did not drastically change the levels of viral DNA photoproducts and lipophilic metabolites. These results suggest that UV-LEDs reduce the infectivity of HSV-1 by targeting different viral molecules based on the peak wavelength. These findings could facilitate the optimization of UV-LED irradiation for viral inactivation.


Assuntos
Herpesvirus Humano 1 , Purificação da Água , Desinfecção/métodos , Humanos , Raios Ultravioleta , Estruturas Virais , Inativação de Vírus , Purificação da Água/métodos
20.
Appl Environ Microbiol ; 77(16): 5629-34, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21724887

RESUMO

There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO(2) is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO(2), SiO(2), and Ag to identify optimal production conditions for the production of TiO(2)- and/or TiO(2)/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO(2) or TiO(2) plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO(2) films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO(2)/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO(2)/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO(2), producing a more pronounced effect with increasing levels of catalyst loading.


Assuntos
Antibacterianos/farmacologia , Bacillus/efeitos dos fármacos , Temperatura Alta , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana/métodos , Prata/farmacologia , Bacillus/efeitos da radiação , Catálise , Desinfetantes/farmacologia , Vidro/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Fotoquímica , Dióxido de Silício/farmacologia , Fatores de Tempo , Titânio/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA