Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biochim Biophys Acta ; 1839(11): 1226-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25220237

RESUMO

The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders.


Assuntos
Encéfalo/metabolismo , Encefalinas/genética , Transtornos Mentais/genética , Neurônios/metabolismo , Precursores de Proteínas/genética , Proteínas Repressoras/fisiologia , Adulto , Encéfalo/patologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Encefalinas/metabolismo , Regulação da Expressão Gênica , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , MicroRNAs/fisiologia , Neurônios/patologia , Precursores de Proteínas/metabolismo
2.
J Neurosci ; 32(36): 12431-6, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22956834

RESUMO

Peripheral nerve injury causes spontaneous and long-lasting pain, hyperalgesia, and allodynia. Excitatory amino acid receptor-dependent increases in descending facilitatory drive from the brainstem rostral ventromedial medulla (RVM) contribute to injury-evoked hypersensitivity. Although increased excitability likely reflects changes in synaptic efficacy, the cellular mechanisms underlying injury-induced synaptic plasticity are poorly understood. Neuronal pentraxin 1 (NP1), a protein with exclusive CNS expression, is implicated in synaptogenesis and AMPA receptor recruitment to immature synapses. Its role in the adult brain and in descending pain facilitation is unknown. Here, we use the spared nerve injury (SNI) model in rodents to examine this issue. We show that SNI increases RVM NP1 expression and constitutive deletion or silencing NP1 in the RVM, before or after SNI, attenuates allodynia and hyperalgesia in rats. Selective rescue of RVM NP1 expression restores behavioral hypersensitivity of knock-out mice, demonstrating a key role of RVM NP1 in the pathogenesis of neuropathic pain.


Assuntos
Proteína C-Reativa/antagonistas & inibidores , Proteína C-Reativa/fisiologia , Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Bulbo/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/metabolismo , Neuralgia/prevenção & controle , Animais , Proteína C-Reativa/genética , Inativação Gênica/fisiologia , Hiperalgesia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuralgia/genética , Neurônios/metabolismo , Manejo da Dor/métodos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
3.
Mol Pharmacol ; 81(1): 73-85, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21992875

RESUMO

The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant (32)P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tirosina/metabolismo , Animais , Plaquetas/enzimologia , Plaquetas/metabolismo , Linhagem Celular , Humanos , Fosforilação/fisiologia , Estabilidade Proteica , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia
4.
J Biol Chem ; 286(23): 20239-50, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21498515

RESUMO

The norepinephrine (NE) transporter (NET) regulates NE signaling by rapidly clearing synaptic NE. Cocaine binds NET and modulates NE transport. These actions contribute to rewarding effects and abuse liability of cocaine. Activation of mitogen-activated protein kinase (MAPK) cascades is implicated in cocaine-induced neuroadaptations. However, the role of MAPK and the mechanisms involved in cocaine modulation of NET are not clear. Acute intra-peritoneal injections of cocaine (20 mg/kg body weight) to rats resulted in increased NE uptake by prefrontal cortex (PFC) synaptosomes with a parallel increase in the surface expression of endogenous NET. Cocaine also enhanced the immunoreactivity of phospho-p38 MAPK in the PFC synaptosomes without affecting the total p38 MAPK. In vitro cocaine (30-50 µM) treatment of rat PFC synaptosomes increased native NET function, surface expression, and phosphorylation in a manner sensitive to p38 MAPK inhibition by PD169316. We next examined cocaine-elicited effects on wild-type human NET (hNET) expressed heterologously in human placental trophoblast cells to gain more insights into the mechanisms involved. Cocaine treatment of hNET expressing human placental trophoblast cells up-regulated the function, surface expression, and phosphorylation of hNET in a PD169316-sensitive manner. In addition, cocaine inhibited constitutive endocytosis of hNET. Mutational analysis of serine and threonine residues revealed that substitution of threonine 30, located at the amino terminus of hNET with alanine (T30A-hNET), abolished cocaine-induced up-regulation of NET function, surface expression, and phosphorylation. Furthermore, cocaine did not alter T30A-hNET endocytosis. These studies identify a novel molecular mechanism that cocaine-activated p38 MAPK-mediated phosphorylation of NET-T30 dictates surface NET availability, and hence, NE transport.


Assuntos
Córtex Cerebral/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Sinaptossomos/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Endocitose/genética , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação de Sentido Incorreto , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ratos , Ratos Sprague-Dawley , Trofoblastos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
5.
FASEB J ; 25(4): 1333-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21233488

RESUMO

Parkinson's disease (PD) involves progressive loss of nigrostriatal dopamine (DA) neurons over an extended period of time. Mitochondrial damage may lead to PD, and neurotoxins affecting mitochondria are widely used to produce degeneration of the nigrostriatal circuitry. Deletion of the mitochondrial transcription factor A gene (Tfam) in C57BL6 mouse DA neurons leads to a slowly progressing parkinsonian phenotype in which motor impairment is first observed at ~12 wk of age. L-DOPA treatment improves motor dysfunction in these "MitoPark" mice, but this declines when DA neuron loss is more complete. To investigate early neurobiological events potentially contributing to PD, we compared the neurochemical and electrophysiological properties of the nigrostriatal circuit in behaviorally asymptomatic 6- to 8-wk-old MitoPark mice and age-matched control littermates. Release, but not uptake of DA, was impaired in MitoPark mouse striatal brain slices, and nigral DA neurons lacked characteristic pacemaker activity compared with control mice. Also, hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel function was reduced in MitoPark DA neurons, although HCN messenger RNA was unchanged. This study demonstrates altered nigrostriatal function that precedes behavioral parkinsonian symptoms in this genetic PD model. A full understanding of these presymptomatic cellular properties may lead to more effective early treatments of PD.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/genética , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Fatores de Transcrição/genética , Animais , Corpo Estriado , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Doença de Parkinson/genética , Substância Negra
6.
J Neurosci ; 30(46): 15457-63, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21084602

RESUMO

The development of drug-seeking habits is implicated in the transition from recreational drug use to addiction. Using a drug seeking/taking chained schedule of intravenous cocaine self-administration and reward devaluation methods in rats, the present studies examined whether drug seeking that is initially goal-directed becomes habitual after prolonged drug seeking and taking. Devaluation of the outcome of the drug seeking link (i.e., the drug taking link of the chained schedule) by extinction significantly decreased drug seeking indicating that behavior is goal-directed rather than habitual. With, however, more prolonged drug experience, animals transitioned to habitual cocaine seeking. Thus, in these animals, cocaine seeking was insensitive to outcome devaluation. Moreover, when the dorsolateral striatum, an area implicated in habit learning, was transiently inactivated, outcome devaluation was effective in decreasing drug seeking indicating that responding was no longer habitual but had reverted to control by the goal-directed system. These studies provide direct evidence that cocaine seeking becomes habitual with prolonged drug experience and describe a rodent model with which to study the neural mechanisms underlying the transition from goal-directed to habitual drug seeking.


Assuntos
Comportamento Aditivo/psicologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/administração & dosagem , Objetivos , Animais , Comportamento Aditivo/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Condicionamento Operante/fisiologia , Masculino , Ratos , Ratos Long-Evans , Autoadministração , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Fatores de Tempo
7.
J Neurosci ; 30(43): 14502-12, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980608

RESUMO

Spontaneous firing of ventral tegmental area (VTA) dopamine (DA) neurons provides ambient levels of DA in target areas such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC). Here we report that the glial cell line-derived neurotrophic factor (GDNF), produced in one target region, the NAc, is retrogradely transported by DA neurons to the VTA where the growth factor positively regulates the spontaneous firing activity of both NAc- and PFC-projecting DA neurons in a mechanism that requires the activation of the mitogen-activated protein kinase (MAPK) pathway. We also show that the consequence of GDNF-mediated activation of the MAPK signaling cascade in the VTA is an increase in DA overflow in the NAc. Together, these results demonstrate that NAc-produced GDNF serves as a retrograde enhancer that upregulates the activity of the mesocorticolimbic DA system.


Assuntos
Córtex Cerebral/fisiologia , Dopamina/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Sistema Límbico/fisiologia , Núcleo Accumbens/metabolismo , Animais , Western Blotting , Química Encefálica , Clonagem Molecular , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Masculino , Microdiálise , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Núcleo Accumbens/fisiologia , RNA/biossíntese , RNA/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simpatectomia Química , Área Tegmentar Ventral/metabolismo
8.
Neurochem Res ; 36(1): 146-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20927585

RESUMO

In the present study we examined the effects of cocaine seizure kindling on the expression of NMDA receptors and levels of extracellular glutamate in mouse brain. Quantitative autoradiography did not reveal any changes in binding of [³H] MK-801 to NMDA receptors in several brain regions. Likewise, in situ hybridization and Western blotting revealed no alteration in expression of the NMDA receptor subunits, NR1 and NR2B. Basal overflow of glutamate in the ventral hippocampus determined by microdialysis in freely moving animals also did not differ between cocaine-kindled and control groups. Perfusion with the selective excitatory amino acid transporter inhibitor, pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mM), increased glutamate overflow confirming transport inhibition. Importantly, KCl-evoked glutamate overflow under tPDC perfusion was significantly higher in cocaine-kindled mice than in control mice. These data suggest that enhancement of depolarization stimulated glutamate release may be one of the mechanisms underlying the development of increased seizure susceptibility after cocaine kindling.


Assuntos
Encéfalo , Cocaína/farmacologia , Ácido Glutâmico/metabolismo , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Maleato de Dizocilpina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , Microdiálise , Receptores de N-Metil-D-Aspartato/genética
9.
J Neurochem ; 112(6): 1454-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20050977

RESUMO

The endocannabinoid, anandamide (AEA), modulates the activity of the dopamine transporter (DAT) in heterologous cells and synaptosomal preparations. The cellular mechanisms mediating this effect are unknown. The present studies employed live cell imaging techniques and the fluorescent, high affinity DAT substrate, 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP(+)), to address this issue. AEA addition to EM4 cells expressing yellow fluorescent protein-tagged human DAT (hDAT) produced a concentration-dependent inhibition of ASP(+) accumulation (IC(50): 3.2 +/- 0.8 microM). This effect occurred within 1 min after AEA addition and persisted for 10 min thereafter. Pertussis toxin did not attenuate the effects of AEA suggesting a mechanism independent of G(i)/G(o) coupled receptors. The amidohydrolase inhibitor, phenylmethylsulfonyl fluoride (0.2 mM), failed to alter the AEA-evoked inhibition of ASP(+) accumulation. Methanandamide (10 microM), a metabolically stable analogue of AEA inhibited accumulation but arachidonic acid (10 microM) was without effect suggesting that the effects of AEA are not mediated by its metabolic products. The extent of AEA inhibition of ASP(+) accumulation was not altered in cells pre-treated with 1 microM URB597, a specific and potent fatty acid amide hydrolase inhibitor, and the cyclooxygenase inhibitor, indomethacin (5 microM) Live cell imaging revealed a significant redistribution of hDAT from the membrane to the cytosol in response to AEA treatment (10 microM; 10 min). Similarly biotinylation experiments revealed that the decrease in DAT function was associated with a reduction in hDAT cell surface expression. These results demonstrate that AEA modulates DAT function via a cannabinoid receptor-independent mechanism and suggest that AEA may produces this effect, in part, by modulating DAT trafficking.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Receptores de Canabinoides/metabolismo , Alanina/metabolismo , Benzamidas/farmacologia , Cálcio/metabolismo , Carbamatos/farmacologia , Linhagem Celular Transformada , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Relação Dose-Resposta a Droga , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal/métodos , Fluoreto de Fenilmetilsulfonil/farmacologia , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Elastômeros de Silicone/metabolismo , Elastômeros de Silicone/farmacologia , Fatores de Tempo , Transfecção/métodos , Trítio/metabolismo , Tropanos/farmacologia
10.
J Neurochem ; 114(4): 1019-29, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20524964

RESUMO

The serotonin transporter (SERT) mediates clearance of serotonin from the synapse, thereby, regulating extracellular serotonin concentrations. Radioligand uptake techniques are typically used to assess SERT function in tissue and heterologous expression systems. The need for sufficient protein in samples, however, requires use of homogenate preparations, potentially masking effects limited to specific cell populations. 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP(+)) is a fluorescent monoamine transporter substrate that has been used for real-time monitoring of dopamine and norepinephrine transporter function in single cells. The present live cell imaging studies examine the utility of ASP(+) for quantifying human SERT function in HEK293 and neuroblastoma cells. We show rapid membrane binding and intracellular ASP(+) accumulation in human SERT-expressing cells. Accumulation is saturable; dependent on temperature and the presence of sodium and chloride in the media, and attenuated by serotonin. Acute or prolonged exposure of cells to serotonin re-uptake inhibitors produces a concentration-dependent decrease in accumulation. Similar effects are produced by protein kinase C activation whereas p38 MAPK activation increases ASP(+) accumulation. These data demonstrate the validity of ASP(+) as a probe for monitoring SERT function in living cells. Alterations in SERT binding and uptake can be quantified in the same cell and use of a within-cell design permits analysis of time-related alterations in SERT function.


Assuntos
Corantes Fluorescentes , Neurônios/metabolismo , Compostos de Piridínio , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Ligação Competitiva/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Microscopia de Vídeo/métodos , Inibidores Seletivos de Recaptação de Serotonina , Coloração e Rotulagem/métodos , Fatores de Tempo
11.
J Pharmacol Exp Ther ; 333(2): 547-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160007

RESUMO

The effect of the plant-derived nonpsychotropic cannabinoid, cannabidiol (CBD), on the function of hydroxytryptamine (5-HT)3A receptors expressed in Xenopus laevis oocytes was investigated using two-electrode voltage-clamp techniques. CBD reversibly inhibited 5-HT (1 microM)-evoked currents in a concentration-dependent manner (IC50 = 0.6 microM). CBD (1 microM) did not alter specific binding of the 5-HT3A antagonist [3H]3-(5-methyl-1H-imidazol-4-yl)-1-(1-methylindol-3-yl)propan-1-one (GR65630), in oocytes expressing 5-HT3A receptors. In the presence of 1 microM CBD, the maximal 5-HT-induced currents were also inhibited. The EC50 values were 1.2 and 1.4 microM, in the absence and presence of CBD, indicating that CBD acts as a noncompetitive antagonist of 5-HT3 receptors. Neither intracellular BAPTA injection nor pertussis toxin pretreatment (5 microg/ml) altered the CBD-evoked inhibition of 5-HT-induced currents. CBD inhibition was inversely correlated with 5-HT3A expression levels and mean 5-HT3 receptor current density. Pretreatment with actinomycin D, which inhibits protein transcription, decreased the mean 5-HT3 receptor current density and increased the magnitude of CBD inhibition. These data demonstrate that CBD is an allosteric inhibitor of 5-HT3 receptors expressed in X. laevis oocytes. They further suggest that allosteric inhibition of 5-HT3 receptors by CBD may contribute to its physiological roles in the modulation of nociception and emesis.


Assuntos
Canabidiol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina , Potenciais de Ação/efeitos dos fármacos , Animais , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas de Ligação ao GTP/fisiologia , Imidazóis/farmacologia , Indóis/farmacologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Toxina Pertussis/farmacologia , Receptores 5-HT3 de Serotonina/biossíntese , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis
12.
Neurochem Res ; 34(8): 1417-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19229609

RESUMO

The goal of our study was to assess the monoaminergic changes in locus coeruleus (LC) and dorsal raphe nucleus (DRN) following noradrenaline (NA) depletion. Seven days after a single N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) intraperitoneal administration in mice, we observed a decrease of NA in both the LC and DRN, as well as in prefrontal cortex (PFC) and hippocampus (HIPP). Moreover, an increase of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) was detected at LC level, while no change was found in DRN. DSP-4 also caused a significant decrease of dopamine (DA) tissue content in HIPP and DRN, without affecting the LC and the PFC. A decrease of DA metabolite, homovanillic acid (HVA), was found in the DRN of NA-depleted mice. These results highlight that the neurotoxic action of DSP-4 is not restricted to LC terminal projections but also involves NA depletion at the cell body level, where it is paralleled by adaptive changes in both serotonergic and dopaminergic systems.


Assuntos
Monoaminas Biogênicas/metabolismo , Locus Cerúleo/metabolismo , Norepinefrina/fisiologia , Núcleos da Rafe/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Benzilaminas/farmacologia , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Inibidores da Captação de Neurotransmissores/farmacologia
13.
Psychopharmacology (Berl) ; 197(3): 509-17, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18246329

RESUMO

RATIONALE: Acute systemic administration of salvinorin A, a naturally occurring kappa-opioid receptor (KOPr) agonist, decreases locomotion and striatal dopamine (DA) overflow. OBJECTIVES: Conventional and quantitative microdialysis techniques were used to determine whether salvinorin A infusion into the dorsal striatum (DSTR) decreases DA overflow by altering DA uptake or release. The influence of repeated salvinorin A administration on basal DA dynamics and cocaine-evoked alterations in DA overflow and locomotion was also assessed. MATERIALS AND METHODS: Salvinorin A was administered via the dialysis probe (0; 20-200 nM) or via intraperitoneal (i.p.) injection (1.0 or 3.2 mg/kg per day x 5 days). The effects of a challenge dose of cocaine were examined 48 h after repeated salvinorin treatment. RESULTS: Retrodialysis of salvinorin A produced a dose-related, KOPr antagonist reversible, decrease in DA levels. Extracellular DA levels were decreased whereas DA extraction fraction, which provides an estimate of DA uptake, was unaltered. In contrast to its acute administration, repeated salvinorin A administration did not modify dialysate DA levels. Similarly, neither basal extracellular DA levels nor DA uptake was altered. Unlike synthetic KOPr agonists, prior repeated administration of salvinorin A did not attenuate the locomotor activating effects of an acute cocaine (20 mg/kg, i.p.) challenge. However, cocaine-evoked DA overflow was enhanced. CONCLUSIONS: These data demonstrate that acute, but not repeated, salvinorin A administration decreases mesostriatal neurotransmission and that activation of DSTR KOPr is sufficient for this effect. Differences in the interaction of salvinorin and synthetic KOPr agonists with cocaine suggest that the pharmacology of these agents may differ.


Assuntos
Corpo Estriado/efeitos dos fármacos , Diterpenos Clerodânicos/farmacologia , Dopamina/metabolismo , Alucinógenos/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores Opioides kappa/agonistas , Animais , Mapeamento Encefálico , Cocaína/farmacologia , Corpo Estriado/patologia , Esquema de Medicação , Interações Medicamentosas , Injeções Intraperitoneais , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley
14.
Neuropsychopharmacology ; 32(7): 1558-69, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17213847

RESUMO

Recreational abuse of toluene-containing volatile inhalants by adolescents is a significant public health problem. The mechanisms underlying the abuse potential of such substances remain unclear, but could involve increased activity in mesoaccumbal dopamine (DA) afferents innervating the nucleus accumbens (ACB). Here, using in vitro electrophysiology, we show that application of behaviorally relevant concentrations of toluene directly stimulates DA neurons in the ventral tegmental area (VTA), but not surrounding midbrain regions. Toluene stimulation of VTA neurons persists when synaptic transmission is reduced. Moreover, unlike non-DA neurons, the magnitude of VTA DA neuron firing does not decline during longer exposures designed to emulate 'huffing'. Using dual-probe in vivo microdialysis, we show that perfusion of toluene directly into the VTA increases DA concentrations in the VTA (somatodendritic release) and its terminal projection site, the ACB. These results provide the first demonstration that even brief exposure to toluene increases action potential drive onto mesoaccumbal VTA DA neurons, thereby enhancing DA release in the ACB. The finding that toluene stimulates mesoaccumbal neurotransmission by activating VTA DA neurons directly (independently of transynaptic inputs) provide insights into the neural substrates that may contribute to the initiation and pathophysiology of toluene abuse.


Assuntos
Dopamina/metabolismo , Exposição por Inalação/efeitos adversos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Tolueno/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Masculino , Microdiálise , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Recompensa , Solventes/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Área Tegmentar Ventral/metabolismo
15.
Neuropharmacology ; 52(3): 895-903, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17126860

RESUMO

The present study used pharmacological and gene ablation techniques to examine the involvement of kappa opioid receptors (KOPr) in modulating the convulsant effects of two mechanistically different drugs: cocaine and pentylenetetrazol (PTZ; GABA-A receptor antagonist) in mice. Systemic administration of the selective KOPr-1 agonist, U69593 (0.16-0.6mg/kg; s.c.), failed to modify cocaine-evoked convulsions or cocaine kindling. Similarly, no alteration in responsiveness to cocaine was observed in wild-type mice that received the selective KOPr-1 antagonist, nor-binaltorphimine (nor-BNI; 5mg/kg) or in mice lacking the gene encoding KOPr-1. In contrast to cocaine, U69593 attenuated the seizures induced by acute or repeated PTZ administration. Nor-BNI decreased the threshold for PTZ-evoked seizures and increased seizure incidence during the initial induction of kindling relative to controls. Decreased thresholds for PTZ-induced seizures were also observed in KOPr-1 knock out mice. Together, these data demonstrate an involvement of endogenous KOPr systems in modulating vulnerability to the convulsant effects of PTZ but not cocaine. Furthermore, they demonstrate that KOPr-1 activation protects against acute and kindled seizures induced by this convulsant. Finally, the results of our study suggest that KOPr-1 antagonists will not have therapeutic utility against cocaine-induced seizures, while they may prove beneficial in attenuating several actions of cocaine that have been linked to its abuse.


Assuntos
Cocaína , Pentilenotetrazol , Receptores Opioides kappa/genética , Convulsões/induzido quimicamente , Convulsões/genética , Analgésicos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Benzenoacetamidas/uso terapêutico , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/administração & dosagem , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/administração & dosagem , Pirrolidinas/uso terapêutico , Convulsões/prevenção & controle
16.
Neuropharmacology ; 113(Pt A): 281-292, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743931

RESUMO

Kappa opioid receptor (KOR) agonists produce dysphoria and psychotomimesis. While KOR agonists produce pro-depressant-like effects, KOR antagonists produce anti-depressant-like effects in rodent models. The cellular mechanisms and downstream effector(s) by which KOR ligands produce these effects are not clear. KOR agonists modulate serotonin (5-HT) transmission in the brain regions implicated in mood and motivation regulation. Presynaptic serotonin transporter (SERT) activity is critical in the modulation of synaptic 5-HT and, subsequently, in mood disorders. Detailing the molecular events of KOR-linked SERT regulation is important for examining the postulated role of this protein in mood disorders. In this study, we used heterologous expression systems and native tissue preparations to determine the cellular signaling cascades linked to KOR-mediated SERT regulation. KOR agonists U69,593 and U50,488 produced a time and concentration dependent KOR antagonist-reversible decrease in SERT function. KOR-mediated functional down-regulation of SERT is sensitive to CaMKII and Akt inhibition. The U69,593-evoked decrease in SERT activity is associated with a decreased transport Vmax, reduced SERT cell surface expression, and increased SERT phosphorylation. Furthermore, KOR activation enhanced SERT internalization and decreased SERT delivery to the membrane. These data demonstrate that KOR activation decreases 5-HT uptake by altering SERT trafficking mechanisms and phosphorylation status to reduce the functional availability of surface SERT.


Assuntos
Analgésicos Opioides/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Analgésicos Opioides/metabolismo , Animais , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Células HEK293 , Humanos , Ligantes , Masculino , Antagonistas de Entorpecentes/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia
17.
J Neurosci ; 25(20): 5029-5037, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15901784

RESUMO

Genetic and pharmacological approaches were used to examine kappa-opioid receptor (KOR-1) regulation of dopamine (DA) dynamics in the nucleus accumbens and vulnerability to cocaine. Microdialysis revealed that basal DA release and DA extraction fraction (Ed), an indirect measure of DA uptake, are enhanced in KOR-1 knock-out mice. Analysis of DA uptake revealed a decreased Km but unchanged Vmax in knock-outs. Knock-out mice exhibited an augmented locomotor response to cocaine, which did not differ from that of wild-types administered a behavioral sensitizing cocaine treatment. The ability of cocaine to increase DA was enhanced in knock-outs, whereas c-fos induction was decreased. Although repeated cocaine administration to wild types produced behavioral sensitization, knock-outs exhibited no additional enhancement of behavior. Administration of the long-acting KOR antagonist nor-binaltorphimine to wild-type mice increased DA dynamics. However, the effects varied with the duration of KOR-1 blockade. Basal DA release was increased whereas Ed was unaltered after 1 h blockade. After 24 h, release and Ed were increased. The behavioral and neurochemical effects of cocaine were enhanced at both time points. These data demonstrate the existence of an endogenous KOR-1 system that tonically inhibits mesoaccumbal DA neurotransmission. Its loss induces neuroadaptations characteristic of "cocaine-sensitized" animals, indicating a critical role of KOR-1 in attenuating responsiveness to cocaine. The increased DA uptake after pharmacological inactivation or gene deletion highlights the plasticity of mesoaccumbal DA neurons and suggests that loss of KOR-1 and the resultant disinhibition of DA neurons trigger short- and long-term DA transporter adaptations that maintain normal DA levels, despite enhanced release.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptores Opioides kappa/fisiologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Western Blotting/métodos , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise/métodos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Dinâmica não Linear , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/deficiência , Fatores de Tempo , Trítio/metabolismo
18.
Neuropsychopharmacology ; 31(2): 396-405, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16034441

RESUMO

Repeated exposure to drugs of abuse results in an increased sensitivity to their behavioral effects, a phenomena referred to as behavioral sensitization. It has been suggested that the same neuroadaptations underlying behavioral sensitization contribute to the maintenance and reinstatement of addiction. Dysregulation of dopamine (DA) neurotransmission in the mesoaccumbens system is one neuroadaptation that is thought to lead to the compulsive drug-seeking that characterizes addiction. Evidence that sensitization to psychostimulants and opiates is associated with an enhancement of drug-evoked DA levels in the nucleus accumbens has also been obtained. Like other drugs of abuse, the acute administration of ethanol (ETOH) stimulates DA release in this brain region. Moreover, repeated ETOH experience results in an enhanced behavioral response to a subsequent ethanol challenge. Data regarding the influence of repeated ethanol intoxication and withdrawal upon mesoaccumbal DA neurotransmission is limited. Studies examining ETOH-evoked alterations in mesoaccumbal DA neurotransmission as a function of withdrawal duration are lacking. The present experiments quantified basal and ethanol-evoked DA levels 14 days and 24 h following the cessation of a repeated ETOH intoxication protocol, which results in sensitization to the locomotor activating effects of ethanol. Locomotor activity was assessed in parallel groups of animals. Studies were conducted in two mouse strains, C57BL/6J and DBA/2J, which differ in their behavioral responses to ETOH. The results indicate the development of transient tolerance to both ETOH-induced behavioral activation and evoked accumbens DA release at early withdrawal. Moreover, no enhanced DA response to a subsequent ETOH challenge could be demonstrated in ETOH experienced animals 2 weeks after withdrawal, in spite of the observation of clear behavioral sensitization at this time point. These results suggest that, at least in the case of ethanol, sensitization of the DA mesolimbic system may not be necessary for the development of behavioral sensitization.


Assuntos
Intoxicação Alcoólica/fisiopatologia , Depressores do Sistema Nervoso Central/administração & dosagem , Dopamina/metabolismo , Etanol/administração & dosagem , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Intoxicação Alcoólica/etiologia , Animais , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/sangue , Esquema de Medicação , Etanol/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Microdiálise/métodos , Índice de Gravidade de Doença , Fatores de Tempo
19.
Neuropharmacology ; 51(3): 487-96, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16781738

RESUMO

Our study examined ethanol self-administration and accumbal dopamine concentration during kappa-opioid receptor (KOPr) blockade. Long-Evans rats were trained to respond for 20 min of access to 10% ethanol (with sucrose) over 7 days. Rats were injected s.c. with the long-acting KOPr antagonist, nor-binaltorphimine (NOR-BNI; 0 or 20 mg/kg) 15-20 h prior to testing. Microdialysis revealed a transient elevation in dopamine concentration within 5 min of ethanol access in controls. NOR-BNI-treated rats did not exhibit this response, but showed a latent increase in dopamine concentration at the end of the access period. The rise in dopamine levels correlated positively with dialysate ethanol concentration but not in controls. NOR-BNI did not alter dopamine levels in rats self-administering 10% sucrose. The transient dopamine response during ethanol acquisition in controls is consistent with previous results that were attributed to ethanol stimulus cues. The altered dopamine response to NOR-BNI during ethanol drinking suggests that KOPr blockade temporarily uncovered a pharmacological stimulation of dopamine release by ethanol. Despite these neurochemical changes, NOR-BNI did not alter operant responding or ethanol intake, suggesting that the KOPr is not involved in ethanol-reinforced behavior under the limited conditions we studied.


Assuntos
Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Dopamina/metabolismo , Etanol/administração & dosagem , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Animais , Área Sob a Curva , Comportamento Animal , Relação Dose-Resposta a Droga , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Interações Medicamentosas , Masculino , Microdiálise/métodos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Ratos Long-Evans , Autoadministração/métodos
20.
J Neurosci Methods ; 155(2): 187-93, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16466808

RESUMO

A number of investigators are using the quantitative no-net-flux microdialysis technique to monitor basal neurotransmitter dynamics in discrete brain regions of behaving animals. The predictive validity of the probe extraction fraction (Ed) for quantifying decreases in the rate of dopamine (DA) clearance from the extracellular space is well documented. It was recently suggested, however, that Ed may be insensitive to increases in DA clearance. Here we report that the Ed for DA in the nucleus accumbens (NAc) of the behaving mouse is increased following pharmacological inactivation of kappa-opioid receptors, a treatment previously shown to augment DA uptake. The Ed obtained in control mice and those that received the long-acting kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI), satisfied the requirement that the mean values of each were lower than the mean value in vitro for the same probes immersed in well-stirred artificial cerebrospinal fluid. The Ed was increased in the NAc of nor-BNI-treated mice as compared to saline-treated control animals. The corresponding increase in the DA uptake rate was quantified by using the Ed values to calculate a change in the apparent clearance rate constant. Nor-BNI treatment did not alter the apparent extracellular dopamine concentration represented by the point of no-net-flux indicating that the rates of DA uptake and release were both increased.


Assuntos
Dopamina/metabolismo , Microdiálise/métodos , Núcleo Accumbens/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estatísticos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Valor Preditivo dos Testes , Receptores Opioides kappa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA