Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Somatosens Mot Res ; 35(1): 1-10, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29447046

RESUMO

Aged individuals experience decreased fine motor function of the hand and digits, which could result, in part, from the chronic, systemic state of inflammation that occurs with aging. Recent research for treating age-related inflammation has focused on the effects of nutraceuticals that have anti-inflammatory properties. One particular dietary polyphenol, curcumin, the principal curcuminoid of the spice turmeric, has been shown to have significant anti-inflammatory effects and there is mounting evidence that curcumin may serve to reduce systemic inflammation. Therefore, it could be useful for alleviating age-related impairments in fine motor function. To test this hypothesis we assessed the efficacy of a dietary intervention with a commercially available optimized curcumin to ameliorate or delay the effects of aging on fine motor function of the hand of rhesus monkeys. We administered oral daily doses of curcumin or a control vehicle to 11 monkeys over a 14- to 18-month period in which they completed two rounds of fine motor function testing. The monkeys receiving curcumin were significantly faster at retrieving a food reward by round 2 of testing than monkeys receiving a control vehicle. Further, the monkeys receiving curcumin demonstrated a greater degree of improvement in performance on our fine motor task by round 2 of testing than monkeys receiving a control vehicle. These findings reveal that fine motor function of the hand and digits is improved in middle-aged monkeys receiving chronic daily administration of curcumin.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Curcumina/administração & dosagem , Feminino , Macaca mulatta , Masculino
2.
Nat Rev Neurol ; 20(7): 426-439, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38866966

RESUMO

Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use. Amyloid PET status was identified as the reference standard. For use as a triaging test before subsequent confirmatory tests such as amyloid PET or CSF tests, the BBM Workgroup recommends that a BBM test has a sensitivity of ≥90% with a specificity of ≥85% in primary care and ≥75-85% in secondary care depending on the availability of follow-up testing. For use as a confirmatory test without follow-up tests, a BBM test should have performance equivalent to that of CSF tests - a sensitivity and specificity of ~90%. Importantly, the predictive values of all biomarker tests vary according to the pre-test probability of amyloid pathology and must be interpreted in the complete clinical context. Use of BBM tests that meet these performance standards could enable more people to receive an accurate and timely Alzheimer disease diagnosis and potentially benefit from new treatments.


Assuntos
Doença de Alzheimer , Biomarcadores , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons/normas , Tomografia por Emissão de Pósitrons/métodos , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano
3.
Ann Clin Transl Neurol ; 10(5): 765-778, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975407

RESUMO

BACKGROUND: The amyloid probability score (APS) is the model read-out of the analytically validated mass spectrometry-based PrecivityAD® blood test that incorporates the plasma Aß42/40 ratio, ApoE proteotype, and age to identify the likelihood of brain amyloid plaques among cognitively impaired individuals being evaluated for Alzheimer's disease. PURPOSE: This study aimed to provide additional independent evidence that the pre-established APS algorithm, along with its cutoff values, discriminates between amyloid positive and negative individuals. METHODS: The diagnostic performance of the PrecivityAD test was analyzed in a cohort of 200 nonrandomly selected Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL) study participants, who were either cognitively impaired or healthy controls, and for whom a blood sample and amyloid PET imaging were available. RESULTS: In a subset of the dataset aligned with the Intended Use population (patients aged 60 and older with CDR ≥0.5), the pre-established APS algorithm predicted amyloid PET with a sensitivity of 84.9% (CI: 72.9-92.1%) and specificity of 96% (CI: 80.5-99.3%), exclusive of 13 individuals for whom the test was inconclusive. INTERPRETATION: The study shows individuals with a high APS are more likely than those with a low APS to have abnormal amounts of amyloid plaques and be on an amyloid accumulation trajectory, a dynamic and evolving process characteristic of progressive AD pathology. Exploratory data suggest APS retains its diagnostic performance in healthy individuals, supporting further screening studies in the cognitively unimpaired.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Pessoa de Meia-Idade , Idoso , Placa Amiloide/diagnóstico por imagem , Austrália , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Envelhecimento/patologia , Amiloide
4.
Brain Res ; 1717: 147-159, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30998931

RESUMO

Cortical injury elicits long-term cytotoxic and cytoprotective mechanisms within the brain and the balance of these pathways can determine the functional outcome for the individual. Cytotoxicity is exacerbated by production of reactive oxygen species, accumulation of iron, and peroxidation of cell membranes and myelin. There are currently no neurorestorative treatments to aid in balancing the cytotoxic and cytoprotective mechanisms following cortical injury. Cell based therapies are an emerging treatment that may function in immunomodulation, reduction of secondary damage, and reorganization of surviving structures. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury restricted to the hand area of primary motor cortex. Systemic hUTC treatment resulted in significantly greater recovery of fine motor function compared to vehicle controls. Here we investigate the hypothesis that hUTC treatment reduces oxidative damage and iron accumulation and increases the extent of the microglial response to cortical injury. To test this, brain sections from these monkeys were processed using immunohistochemistry to quantify oxidative damage (4-HNE) and activated microglia (LN3), and Prussian Blue to quantify iron. hUTC treated subjects exhibited significantly reduced oxidative damage in the sublesional white matter and iron accumulation in the perilesional area as well as a significant increase in the extent of activated microglia along white matter pathways. Increased perilesional iron accumulation was associated with greater perilesional oxidative damage and larger reconstructed lesion volume. These findings support the hypothesis that systemic hUTC administered 24 h after cortical damage decreases the cytotoxic response while increasing the extent of microglial activation.


Assuntos
Lesões Encefálicas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Córtex Motor/metabolismo , Animais , Encéfalo/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Humanos , Ferro/metabolismo , Macaca mulatta , Ativação de Macrófagos/fisiologia , Masculino , Microglia/metabolismo , Bainha de Mielina/metabolismo , Oxirredução/efeitos dos fármacos
5.
Geroscience ; 39(2): 199-220, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28238188

RESUMO

While cognitive decline is observed in the normal aging monkey, neurons are not lost with age. Instead, frontal white matter is lost as myelin degenerates and both correlate with age-related cognitive decline. As age-related myelin damage increases, there should be an increase in clearance of damaged myelin by microglial phagocytosis. In this study, brains of behaviorally tested rhesus monkeys were assessed using unbiased stereology to quantify the density of activated microglia (LN3 antibody positive) and phagocytic microglia (galectin-3 (Gal-3) antibody positive) in three white matter regions: the corpus callosum, cingulum bundle (CGB), and frontal white matter (FWM). LN3 cell density was significantly increased in the CGB, whereas Gal-3 cell density was significantly increased in all regions. Increases in Gal-3 cell density in the FWM were associated with cognitive impairment. In the FWM of old animals, Gal-3-positive microglia were classified by morphological subtype as ramified, hypertrophic, or amoeboid. The densities of hypertrophic and amoeboid microglia significantly correlated with cognitive impairment. Finally, microglia were double-labeled with LN3 and Gal-3 showing that 91% of Gal-3 cells were also LN3 positive, thus expressing an "activated" phenotype. Furthermore, 15% of all double-labeled cells formed phagocytic cups. Overall, these results suggest that microglia become activated in white matter with age where the majority express a phagocytic phenotype. We hypothesize that age-related phagocytic activation of microglia is a response to accumulating myelin pathology. The association of Gal-3 in the FWM with cognitive impairment may reflect regional differences in damage or dysfunction of normal clearance mechanisms.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Microglia/fisiologia , Fagocitose/fisiologia , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Feminino , Galectina 3/metabolismo , Macaca mulatta , Masculino
6.
Geroscience ; 39(5-6): 571-584, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29047012

RESUMO

Studies of both humans and non-human primates have demonstrated that aging is typically characterized by a decline in cognition that can occur as early as the fifth decade of life. Age-related changes in working memory are particularly evident and mediated, in part, by the prefrontal cortex, an area known to evidence age-related changes in myelin that is attributed to inflammation. In recent years, several nutraceuticals, including curcumin, by virtue of their anti-inflammatory and antioxidant effects, have received considerable attention as potential treatments for age-related cognitive decline and inflammation. Accordingly, we assessed for the first time in a non-human primate model of normal aging the efficacy of dietary intervention using the natural phenol curcumin to ameliorate the effects of aging on spatial working and recognition memory. Results revealed that monkeys receiving daily administration of curcumin over 14-18 months demonstrated a greater improvement in performance on repeated administration of a task of spatial working memory compared to monkeys that received a control substance.


Assuntos
Cognição/efeitos dos fármacos , Curcumina/administração & dosagem , Memória de Curto Prazo/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Fatores Etários , Animais , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Haplorrinos , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória , Valores de Referência , Fatores Sexuais , Análise e Desempenho de Tarefas
7.
Artigo em Inglês | MEDLINE | ID: mdl-22265889

RESUMO

Cannabinoid modulation of dopaminergic transmission is suggested by the ability of delta9-tetrahydrocanabinoid to affect motor and motivated behaviors in a manner similar to that produced by pharmacological manipulation of the nigrostriatal and mesocorticolimbic dopamine systems. These behavioral effects as well as analogous effects of endocannabinoids are largely mediated through the cannabinoid type 1 receptor (CB1R). This receptor is located within the substantia nigra and ventral tegmental area, which respectively house the somata of nigrostriatal and mesocorticolimbic dopaminergic neurons. The CB1R is also abundantly expressed in brain regions targeted by the efferent terminals of these dopaminergic neurons. In this review we present the accumulating anatomical and electrophysiological evidence indicating that in each of these systems cannabinoids modulate dopamine transmission largely if not exclusively through indirect mechanisms. The summarized mechanisms include presynaptic release of amino acid transmitters onto midbrain dopamine neurons and onto both cortical and striatal neurons that express dopamine D1-like or D2-like receptors functionally affiliated with the CB1 receptor. The review concludes with a consideration of the psychiatric and neurological implications of cannabinoid modulation of dopamine transmission within these networks.


Assuntos
Encéfalo/metabolismo , Canabinoides/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Sistema Límbico/metabolismo , Rede Nervosa/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA