Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurotrauma ; 37(12): 1452-1462, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27733104

RESUMO

Mild traumatic brain injury results in aberrant free radical generation, which is associated with oxidative stress, secondary injury signaling cascades, mitochondrial dysfunction, and poor functional outcome. Pharmacological targeting of free radicals with antioxidants has been examined as an approach to treatment, but has met with limited success in clinical trials. Conventional antioxidants that are currently available scavenge a single free radical before they are destroyed in the process. Here, we report for the first time that a novel regenerative cerium oxide nanoparticle antioxidant reduces neuronal death and calcium dysregulation after in vitro trauma. Further, using an in vivo model of mild lateral fluid percussion brain injury in the rat, we report that cerium oxide nanoparticles also preserve endogenous antioxidant systems, decrease macromolecular free radical damage, and improve cognitive function. Taken together, our results demonstrate that cerium oxide nanoparticles are a novel nanopharmaceutical with potential for mitigating neuropathological effects of mild traumatic brain injury and modifying the course of recovery.


Assuntos
Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/patologia , Cério/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Animais Recém-Nascidos , Concussão Encefálica/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Técnicas In Vitro , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
2.
Biomed Sci Instrum ; 49: 312-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23686215

RESUMO

Research into the mechanics of blast-induced traumatic brain injury requires a device capable of reproducing pressures of the same magnitude and time scale as a blast wave. A blast simulator based on the exploding bridge wire mechanism was created with these capabilities. Peak blast pressures in the range of 5 – 29 psi were generated with a positive phase duration less than 20 µs. A series of experiments using 0.008 inch diameter wires (10-20 psi) were used to demonstrate the ability of the blast simulator to injure in vitro primary brain cell cultures at 1, 24, and 48 hours following blast. Blast exposure caused a rapid loss of cells which was significant over controls. Propidium iodide uptake indicated limited injury to cellular membranes but the cytoskeletal structure showed signs of degeneration 1 hour following blast. These results indicate that the bridge wire blast simulator can serve as a suitable in vitro model of blast injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA