RESUMO
2',5'-Oligoadenylate synthetase (OAS) enzymes and RNase-L constitute a major effector arm of interferon (IFN)-mediated antiviral defense. OAS produces a unique oligonucleotide second messenger, 2',5'-oligoadenylate (2-5A), that binds and activates RNase-L. This pathway is down-regulated by virus- and host-encoded enzymes that degrade 2-5A. Phosphodiesterase 12 (PDE12) was the first cellular 2-5A- degrading enzyme to be purified and described at a molecular level. Inhibition of PDE12 may up-regulate the OAS/RNase-L pathway in response to viral infection resulting in increased resistance to a variety of viral pathogens. We generated a PDE12-null cell line, HeLaΔPDE12, using transcription activator-like effector nuclease-mediated gene inactivation. This cell line has increased 2-5A levels in response to IFN and poly(I-C), a double-stranded RNA mimic compared with the parental cell line. Moreover, HeLaΔPDE12 cells were resistant to viral pathogens, including encephalomyocarditis virus, human rhinovirus, and respiratory syncytial virus. Based on these results, we used DNA-encoded chemical library screening to identify starting points for inhibitor lead optimization. Compounds derived from this effort raise 2-5A levels and exhibit antiviral activity comparable with the effects observed with PDE12 gene inactivation. The crystal structure of PDE12 complexed with an inhibitor was solved providing insights into the structure-activity relationships of inhibitor potency and selectivity.
Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Antivirais/farmacologia , Endorribonucleases/imunologia , Exorribonucleases/química , Imunidade Inata , Bibliotecas de Moléculas Pequenas/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , Nucleotídeos de Adenina/imunologia , Nucleotídeos de Adenina/metabolismo , Antivirais/síntese química , Cristalografia por Raios X , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/metabolismo , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/genética , Exorribonucleases/imunologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HeLa , Humanos , Interferon-alfa/farmacologia , Modelos Moleculares , Oligorribonucleotídeos/imunologia , Oligorribonucleotídeos/metabolismo , Poli I-C/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/metabolismo , Rhinovirus/genética , Rhinovirus/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-AtividadeRESUMO
Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.
Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , CamundongosRESUMO
GSK2485852 (referred to here as GSK5852) is a hepatitis C virus (HCV) NS5B polymerase inhibitor with 50% effective concentrations (EC50s) in the low nanomolar range in the genotype 1 and 2 subgenomic replicon system as well as the infectious HCV cell culture system. We have characterized the antiviral activity of GSK5852 using chimeric replicon systems with NS5B genes from additional genotypes as well as NS5B sequences from clinical isolates of patients infected with HCV of genotypes 1a and 1b. The inhibitory activity of GSK5852 remained unchanged in these intergenotypic and intragenotypic replicon systems. GSK5852 furthermore displays an excellent resistance profile and shows a <5-fold potency loss across the clinically important NS5B resistance mutations P495L, M423T, C316Y, and Y448H. Testing of a diverse mutant panel also revealed a lack of cross-resistance against known resistance mutations in other viral proteins. Data from both the newer 454 sequencing method and traditional population sequencing showed a pattern of mutations arising in the NS5B RNA-dependent RNA polymerase in replicon cells exposed to GSK5852. GSK5852 was more potent than HCV-796, an earlier inhibitor in this class, and showed greater reductions in HCV RNA during long-term treatment of replicons. GSK5852 is similar to HCV-796 in its activity against multiple genotypes, but its superior resistance profile suggests that it could be an attractive component of an all-oral regimen for treating HCV.
Assuntos
Antivirais/farmacologia , Ácidos Borônicos/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Replicon/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Benzofuranos/farmacologia , Linhagem Celular , Farmacorresistência Viral/genética , Ensaios Enzimáticos , Genótipo , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C Crônica/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cinética , Testes de Sensibilidade Microbiana , Tipagem Molecular , Mutação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
Hematopoietic progenitor kinase 1 (HPK1) is an MAP4K family member within the Ste20-like serine/threonine branch of the kinome. HPK1 expression is limited to hematopoietic cells and has a predominant role as a negative regulator of T cell function. Because of the central/dominant role in negatively regulating T cell function, HPK1 has long been in the center of interest as a potential pharmacological target for immune therapy. The development of a small molecule HPK1 inhibitor remains challenging because of the need for high specificity relative to other kinases, including additional MAP4K family members, that are required for efficient immune cell activation. Here, we report the identification of the selective and potent HPK1 chemical probe, A-745. In unbiased cellular kinase-binding assays, A-745 demonstrates an excellent cellular selectivity binding profile within pharmacologically relevant concentrations. This HPK1 selectivity translates to an in vitro immune cell activation phenotype reminiscent of Hpk1-deficient and Hpk1-kinase-dead T cells, including augmented proliferation and cytokine production. The results from this work give a path forward for further developmental efforts to generate additional selective and potent small molecule HPK1 inhibitors with the pharmacological properties for immunotherapy.
Assuntos
Proteínas Serina-Treonina Quinases , Linfócitos T , Fatores Imunológicos , Imunoterapia , Transdução de SinaisRESUMO
H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.
Assuntos
Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Epigenômica/métodos , Histonas/genética , Mutação , Animais , Neoplasias do Tronco Encefálico/metabolismo , Linhagem Celular Tumoral , Glioma Pontino Intrínseco Difuso/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Transplante HeterólogoRESUMO
Exploration of the SAR around a series of 3,5-disubstituted-1H-pyrrolo[2,3-b]pyridines led to the discovery of novel pyrrolopyridine inhibitors of the IGF-1R tyrosine kinase. Several compounds demonstrated nanomolar potency in enzyme and cellular mechanistic assays.
Assuntos
Inibidores de Proteínas Quinases/química , Piridinas/química , Pirróis/química , Receptor IGF Tipo 1/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Pirróis/síntese química , Pirróis/farmacologia , Receptor IGF Tipo 1/metabolismo , Relação Estrutura-AtividadeRESUMO
The SAR of C5' functional groups with terminal basic amines at the C6 aniline of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines is reported. Examples demonstrate potent inhibition of IGF-1R with 1000-fold selectivity over JNK1 and 3 in enzymatic assays.
Assuntos
MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Modelos Moleculares , Pirimidinas/química , Pirróis/química , Relação Estrutura-AtividadeRESUMO
The evaluation of a series of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines as inhibitors of the IGF-1R (IGF-IR) receptor tyrosine kinase is reported. Examples demonstrate nanomolar potencies in in vitro enzyme and mechanistic cellular assays as well as promising in vivo pharmacokinetics in rat.
Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Descoberta de Drogas , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , RatosRESUMO
We previously described the discovery of GSK5852 (1), a non-nucleoside polymerase (NS5B) inhibitor of hepatitis C virus (HCV), in which an N-benzyl boronic acid was essential for potent antiviral activity. Unfortunately, facile benzylic oxidation resulted in a short plasma half-life (5 h) in human volunteers, and a backup program was initiated to remove metabolic liabilities associated with 1. Herein, we describe second-generation NS5B inhibitors including GSK8175 (49), a sulfonamide- N-benzoxaborole analog with low in vivo clearance across preclinical species and broad-spectrum activity against HCV replicons. An X-ray structure of NS5B protein cocrystallized with 49 revealed unique protein-inhibitor interactions mediated by an extensive network of ordered water molecules and the first evidence of boronate complex formation within the binding pocket. In clinical studies, 49 displayed a 60-63 h half-life and a robust decrease in viral RNA levels in HCV-infected patients, thereby validating our hypothesis that reducing benzylic oxidation would improve human pharmacokinetics and lower efficacious doses relative to 1.
Assuntos
Antivirais/farmacologia , Ácidos Borônicos/farmacologia , Desenho de Fármacos , Hepacivirus/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Animais , Antivirais/química , Antivirais/farmacocinética , Ácidos Borônicos/química , Ácidos Borônicos/farmacocinética , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Macaca fascicularis , Camundongos , Estrutura Molecular , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacocinética , RatosRESUMO
IL-36 cytokines are pro-inflammatory members of the IL-1 family that are upregulated in inflammatory disorders. Specifically, IL-36γ is highly expressed in active psoriatic lesions and can drive pro-inflammatory processes in 3D human skin equivalents supporting a role for this target in skin inflammation. Small molecule antagonists of interleukins have been historically challenging to generate. Nevertheless, we performed a small molecule high-throughput screen to identify IL-36 antagonists using a novel TR-FRET binding assay. Several compounds, including 2-oxypyrimidine containing structural analogs of the marketed endothelin receptor A antagonist Ambrisentan, were identified as hits from the screen. A-552 was identified as a the most potent antagonist of human IL-36γ, but not the closely related family member IL-36α, was capable of attenuating IL-36γ induced responses in mouse and human disease models. Additionally, x-ray crystallography studies identified key amino acid residues in the binding pocket present in human IL-36γ that are absent in human IL-36α. A-552 represents a first-in-class small molecule antagonist of IL-36 signaling that could be used as a chemical tool to further investigate the role of this pathway in inflammatory skin diseases such as psoriasis.
Assuntos
Interleucina-1/antagonistas & inibidores , Psoríase/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Psoríase/metabolismo , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/patologia , Bibliotecas de Moléculas Pequenas/uso terapêuticoRESUMO
A synthetic route to bisanilino-1H-pyrrolo[2,3-d]pyrimidines has been discovered, wherein the C(6)-chloride reactivity is necessarily enhanced via reversible acid-catalyzed internal activation of the pyrimidine ring by a C(1')-carboxamide moiety. Subsequent selective nucleophilic displacements at C(6) and C(1') constitute a one-pot tandem protocol for the rapid assembly of bisanilino-1H-pyrrolo[2,3-d]pyrimidines.
Assuntos
Amidas/química , Química Orgânica/métodos , Pirimidinas/química , Pirróis/química , Carbono/química , Catálise , Cloretos/química , Desenho de Fármacos , Modelos QuímicosRESUMO
IDH1 plays a critical role in a number of metabolic processes and serves as a key source of cytosolic NADPH under conditions of cellular stress. However, few inhibitors of wild-type IDH1 have been reported. Here we present the discovery and biochemical characterization of two novel inhibitors of wild-type IDH1. In addition, we present the first ligand-bound crystallographic characterization of these novel small molecule IDH1 binding pockets. Importantly, the NADPH competitive α,ß-unsaturated enone 1 makes a unique covalent linkage through active site H315. As few small molecules have been shown to covalently react with histidine residues, these data support the potential utility of an underutilized strategy for reversible covalent small molecule design.
Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histidina , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
[reaction: see text] The protiodesilylation of unactivated C(sp3)-SiMe2Ph bonds proceeds efficiently by treatment with tetrabutylammonium fluoride in wet DMF or THF via isolable dimethylsilanol intermediates.
Assuntos
Furanos/química , Compostos de Amônio Quaternário/química , Silanos/química , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
[reaction: see text] An efficient synthesis of the C(11)-C(29) fragment 31 of amphidinolide F has been accomplished via a diastereoselective [3 + 2]-annulation reaction of allylsilane 5 and ethyl glyoxylate to prepare the key tetrahydrofuran 15 and a highly stereoselective methyl ketone aldol reaction to generate the C(11)-C(16) segment.
Assuntos
Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , MacrolídeosRESUMO
[reaction: see text] A highly convergent synthesis of the angiogenesis inhibitor luminacin D has been achieved in 13 linear steps (19 steps total, 5.3% overall yield) utilizing a samarium(II) iodide-mediated mixed tandem aldol/Evans-Tishchenko reaction to construct the carbohydrate precursor. The modular synthetic design will allow derivatization at key positions necessary for biochemical mode of action studies.
Assuntos
Inibidores da Angiogênese/síntese química , Benzaldeídos/síntese química , Compostos de Espiro/síntese química , Inibidores da Angiogênese/farmacologia , Animais , Benzaldeídos/farmacologia , Bovinos , Divisão Celular/efeitos dos fármacos , Endotélio Vascular/citologia , Concentração Inibidora 50 , Compostos de Espiro/farmacologia , Relação Estrutura-AtividadeRESUMO
The role of HMPA as a ligand for SmI2 and the stoichiometry and energetics of formation for the SmI2-HMPA complex in THF were investigated employing UV-vis spectroscopy, isothermal titration calorimetry (ITC), and vapor pressure osmometry (VPO). The aggregation number for SmI2 in THF was found to be 0.98 ± 0.09 over the entire concentration range studied (6.71-84.0 mM), indicating that SmI2 is monomeric. The UV-vis data suggest that four HMPA ligands coordinate to SmI2, and this was supported by ITC experiments. The combined results are consistent with [SmI2(HMPA)4] being the reductant responsible for the unique reactivity exhibited by SmI2-HMPA cosolvent combinations.
RESUMO
Hepatitis C virus (HCV) assembles many host cellular proteins into unique membranous replication structures as a prerequisite for viral replication, and PI4KIIIα is an essential component of these replication organelles. RNA interference of PI4KIIIα results in a breakdown of this replication complex and cessation of HCV replication in Huh-7 cells. PI4KIIIα is a lipid kinase that interacts with the HCV nonstructural 5A protein (NS5A) and enriches the HCV replication complex with its product, phosphoinositol 4-phosphate (PI4P). Elevated levels of PI4P at the endoplasmic reticulum have been linked to HCV infection in the liver of HCV infected patients. We investigated if small molecule inhibitors of PI4KIIIα could inhibit HCV replication in vitro. The synthesis and structure-activity relationships associated with the biological inhibition of PI4KIIIα and HCV replication are described. These efforts led directly to identification of quinazolinone 28 that displays high selectivity for PI4KIIIα and potently inhibits HCV replication in vitro.
Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Animais , Antivirais/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ratos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacosRESUMO
We describe the preclinical development and in vivo efficacy of a novel chemical series that inhibits hepatitis C virus replication via direct interaction with the viral nonstructural protein 4B (NS4B). Significant potency improvements were realized through isosteric modifications to our initial lead 1a. The temptation to improve antiviral activity while compromising physicochemical properties was tempered by the judicial use of ligand efficiency indices during lead optimization. In this manner, compound 1a was transformed into (+)-28a which possessed an improved antiviral profile with no increase in molecular weight and only a modest elevation in lipophilicity. Additionally, we employed a chimeric "humanized" mouse model of HCV infection to demonstrate for the first time that a small molecule with high in vitro affinity for NS4B can inhibit viral replication in vivo. This successful proof-of-concept study suggests that drugs targeting NS4B may represent a viable treatment option for curing HCV infection.
Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Área Sob a Curva , Modelos Animais de Doenças , Hepacivirus/fisiologia , Hepatite C/virologia , Camundongos , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologiaRESUMO
A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild-type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a subgenomic replication system for a series of non-nucleoside boron-containing HCV RNA-dependent RNA polymerase (NS5B) inhibitors are described. A summary of the discovery of 3 (GSK5852), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.
Assuntos
Antivirais/farmacologia , Ácidos Borônicos/química , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Descoberta de Drogas , Farmacorresistência Viral/genética , Hepacivirus/enzimologia , Hepacivirus/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidoresRESUMO
A series of imidazo[1,2-a]pyridines which directly bind to HCV Non-Structural Protein 4B (NS4B) is described. This series demonstrates potent in vitro inhibition of HCV replication (EC50 < 10 nM), direct binding to purified NS4B protein (IC50 < 20 nM), and an HCV resistance pattern associated with NS4B (H94N/R, V105L/M, F98L) that are unique among reported HCV clinical assets, suggestive of the potential for additive or synergistic combination with other small molecule inhibitors of HCV replication.