Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Org Biomol Chem ; 11(19): 3255-60, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23584015

RESUMO

Modular gold amide chemotherapeutics: Access to modern chemotherapeutics with robust and flexible synthetic routes that are amenable to extensive customisation is a key requirement in drug synthesis and discovery. A class of chiral gold amide complexes featuring amino acid derived ligands is reported herein. They all exhibit in vitro cytotoxicity against two slow growing breast cancer cell lines with limited toxicity towards normal epithelial cells.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , Ouro/química , Compostos Organoáuricos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Nigericina/farmacologia , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Relação Estrutura-Atividade
2.
Elife ; 122023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883553

RESUMO

DNA repair deficiencies in cancers may result in characteristic mutational patterns, as exemplified by deficiency of BRCA1/2 and efficacy prediction for PARP inhibitors. We trained and evaluated predictive models for loss-of-function (LOF) of 145 individual DNA damage response genes based on genome-wide mutational patterns, including structural variants, indels, and base-substitution signatures. We identified 24 genes whose deficiency could be predicted with good accuracy, including expected mutational patterns for BRCA1/2, MSH3/6, TP53, and CDK12 LOF variants. CDK12 is associated with tandem duplications, and we here demonstrate that this association can accurately predict gene deficiency in prostate cancers (area under the receiver operator characteristic curve = 0.97). Our novel associations include mono- or biallelic LOF variants of ATRX, IDH1, HERC2, CDKN2A, PTEN, and SMARCA4, and our systematic approach yielded a catalogue of predictive models, which may provide targets for further research and development of treatment, and potentially help guide therapy.


Many different aspects of the environment ­ such as ultraviolet radiation, carcinogens in food and drink, and the ageing process itself ­ damage the DNA in human cells. Normally, cells can repair these sites by activating a mechanism known as the DNA damage response. However, the hundreds of genes that orchestrate this response are also themselves often lost or damaged, allowing the unrepaired sites to turn into permanent mutations that accumulate across the genome of the cancer cell. By studying the DNA of cancer cells, it has been possible to identify characteristic patterns of mutations, called mutational signatures, that appear in different types of cancer. One specific pattern has been linked to the loss of either the BRCA1 or BRCA2 gene, both of which are part of the DNA damage response. However, it remained unclear how many other genes involved in the DNA damage response also lead to detectable mutational signatures when lost. To investigate, Sørensen et al. computationally analysed data from over six thousand cancer patients. They looked for associations between over 700 DNA damage response genes and 80 different mutational signatures. As expected, the analysis revealed a strong connection between the loss of BRCA1/BRCA2 and their known mutational signature. However, it also found 23 other associations between DNA damage response genes that had been lost or damaged and particular patterns of mutations in a variety of cancers. These findings suggest that mutational signatures could be used more widely to predict which DNA damage response genes are no longer functioning in the genome of cancer cells. The mutational signature caused by the loss of BRAC1/BRAC2 has been shown to make patients more responsive to a certain type of chemotherapy. Further experiments are needed to determine whether the connections identified by Sørensen et al. could also provide information on which treatment would benefit a cancer patient the most. In the future, this might help medical practitioners provide more personalized treatment.


Assuntos
Distúrbios no Reparo do DNA , Neoplasias , Masculino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Mutação , Neoplasias/genética , Reparo do DNA/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Elife ; 82019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31697235

RESUMO

Defective mismatch repair leads to increased mutation rates, and germline loss-of-function variants in the repair component MLH1 cause the hereditary cancer predisposition disorder known as Lynch syndrome. Early diagnosis is important, but complicated by many variants being of unknown significance. Here we show that a majority of the disease-linked MLH1 variants we studied are present at reduced cellular levels. We show that destabilized MLH1 variants are targeted for chaperone-assisted proteasomal degradation, resulting also in degradation of co-factors PMS1 and PMS2. In silico saturation mutagenesis and computational predictions of thermodynamic stability of MLH1 missense variants revealed a correlation between structural destabilization, reduced steady-state levels and loss-of-function. Thus, we suggest that loss of stability and cellular degradation is an important mechanism underlying many MLH1 variants in Lynch syndrome. Combined with analyses of conservation, the thermodynamic stability predictions separate disease-linked from benign MLH1 variants, and therefore hold potential for Lynch syndrome diagnostics.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/metabolismo , Dobramento de Proteína , Proteólise , Linhagem Celular , Biologia Computacional , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteínas MutL/metabolismo , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Estabilidade Proteica
4.
PLoS One ; 8(8): e70107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967070

RESUMO

Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle.


Assuntos
Dano ao DNA , Íons Pesados/efeitos adversos , Histonas/metabolismo , Ferro/efeitos adversos , Imagem Molecular , Linhagem Celular , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Transferência Linear de Energia , Microscopia , Mitose/efeitos da radiação
5.
Mol Cell Biol ; 31(19): 4022-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791604

RESUMO

Heterochromatin (HC) poses a barrier to γH2AX focus expansion and DNA double-strand break (DSB) repair, the latter being relieved by ATM-dependent KAP-1 phosphorylation. Using high-resolution imaging, we show here that the HC superstructure markedly restricts ATM signaling to cell cycle checkpoint proteins. The impact of HC is greater than anticipated from the percentage of HC-DNA and, in distinction to DSB repair, ATM only partly overcomes the constraints posed by HC. Importantly, we examine ATM signaling in human syndromes with disordered HC. After depletion of MeCP2 and DNMT3B, proteins defective in the Rett and immunodeficiency with centromere instability and facial anomalies (ICF) syndromes, respectively, we demonstrate enhanced γH2AX signal expansion at HC-chromocenters in mouse NIH 3T3 cells, which have visible HC-chromocenters. Previous studies have shown that the G(2)/M checkpoint is inefficient requiring multiple DSBs to initiate arrest. MeCP2 and DNMT3B depletion leads to hypersensitive radiation-induced G(2)/M checkpoint arrest despite normal DSB repair. Cell lines from Rett, ICF, and Hutchinson-Guildford progeria syndrome patients similarly showed hyperactivated ATM signaling and hypersensitive and prolonged G(2)/M checkpoint arrest. Collectively, these findings reveal that heterochromatin contributes to the previously described inefficient G(2)/M checkpoint arrest and demonstrate how the signaling response can be uncoupled from DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Doenças Genéticas Inatas/genética , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Síndrome de Rett/genética , Síndrome , Proteína 28 com Motivo Tripartido , Proteínas Supressoras de Tumor/genética , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA