Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochemistry (Mosc) ; 88(1): 119-130, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068873

RESUMO

The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (ΔN peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the ΔN peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (ΔN peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion.


Assuntos
Potexvirus , Potexvirus/química , Potexvirus/metabolismo , Proteínas do Capsídeo/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírion/metabolismo
2.
Biochemistry (Mosc) ; 88(5): 640-654, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331710

RESUMO

Structure and function of bacterial nucleoid is controlled by the nucleoid-associated proteins (NAP). In any phase of growth, various NAPs, acting sequentially, condense nucleoid and facilitate formation of its transcriptionally active structure. However, in the late stationary phase, only one of the NAPs, Dps protein, is strongly expressed, and DNA-protein crystals are formed that transform nucleoid into a static, transcriptionally inactive structure, effectively protected from the external influences. Discovery of crystal structures in living cells and association of this phenomenon with the bacterial resistance to antibiotics has aroused great interest in studying this phenomenon. The aim of this work is to obtain and compare structures of two related NAPs (HU and IHF), since they are the ones that accumulate in the cell at the late stationary stage of growth, which precedes formation of the protective DNA-Dps crystalline complex. For structural studies, two complementary methods were used in the work: small-angle X-ray scattering (SAXS) as the main method for studying structure of proteins in solution, and dynamic light scattering as a complementary one. To interpret the SAXS data, various approaches and computer programs were used (in particular, the evaluation of structural invariants, rigid body modeling and equilibrium mixture analysis in terms of the volume fractions of its components were applied), which made it possible to determine macromolecular characteristics and obtain reliable 3D structural models of various oligomeric forms of HU and IHF proteins with ~2 nm resolution typical for SAXS. It was shown that these proteins oligomerize in solution to varying degrees, and IHF is characterized by the presence of large oligomers consisting of initial dimers arranged in a chain. An analysis of the experimental and published data made it possible to hypothesize that just before the Dps expression, it is IHF that forms toroidal structures previously observed in vivo and prepares the platform for formation of DNA-Dps crystals. The results obtained are necessary for further investigation of the phenomenon of biocrystal formation in bacterial cells and finding ways to overcome resistance of various pathogens to external conditions.


Assuntos
Proteínas de Ligação a DNA , Hidrodinâmica , Proteínas de Ligação a DNA/metabolismo , Espalhamento a Baixo Ângulo , DNA Bacteriano/metabolismo , Difração de Raios X , Proteínas de Bactérias/metabolismo , DNA
3.
Biochemistry (Mosc) ; 87(6): 511-523, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35790408

RESUMO

DNA-binding protein from starved cells (Dps) takes a special place among dodecamer mini-ferritins. Its most important function is protection of bacterial genome from various types of destructive external factors via in cellulo Dps-DNA co-crystallization. This protective response results in the emergence of bacterial resistance to antibiotics and other drugs. The protective properties of Dps have attracted a significant attention of researchers. However, Dps has another equally important functional role. Being a ferritin-like protein, Dps acts as an iron depot and protects bacterial cells from the oxidative damage initiated by the excess of iron. Here we investigated formation of iron oxide nanoparticles in the internal cavity of the Dps dodecamer. We used anomalous small-angle X-ray scattering as the main research technique, which allows to examine the structure of metal-containing biological macromolecules and to analyze the size distribution of metal nanoparticles formed in them. The contributions of protein and metal components to total scattering were distinguished by varying the energy of the incident X-ray radiation near the edge of the metal atom absorption band (the K-band for iron). We examined Dps specimens containing 50, 500, and 2000 iron atoms per protein dodecamer. Analysis of the particle size distribution showed that, depending on the iron content in the solution, the size of the nanoparticles formed inside the protein molecule was 2 to 4 nm and the growth of metal nanoparticles was limited by the size of the protein inner cavity. We also found some amount of iron ions in the Dps surface layer. This layer is very important for the protein to perform its protective functions, since the surface-located N-terminal domains determine the nature of interactions between Dps and DNA. In general, the results obtained in this work can be useful for the next step in studying the Dps phenomenon, as well as in creating biocompatible and solution-stabilized metal nanoparticles.


Assuntos
Proteínas de Bactérias , Ferritinas , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Ferritinas/química , Ferro/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Raios X
4.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077365

RESUMO

The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called "intrinsically disordered" nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552.


Assuntos
Heme , Tiocianatos , Grupo dos Citocromos c , Ectothiorhodospiraceae , Escherichia coli/metabolismo , Heme/metabolismo , Espectroscopia de Ressonância Magnética , Oxirredução , Oxirredutases/metabolismo
5.
Biochemistry (Mosc) ; 86(2): 230-240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33832421

RESUMO

Potato virus A (PVA) protein coat contains on its surface partially unstructured N-terminal domain of the viral coat protein (CP), whose structural and functional characteristics are important for understanding the mechanism of plant infection with this virus. In this work, we investigated the properties and the structure of intact PVA and partially trypsinized PVAΔ32 virions using small-angle X-ray scattering (SAXS) and complimentary methods. It was shown that after the removal of 32 N-terminal amino acids of the CP, the virion did not disintegrate and remained compact, but the helical pitch of the CP packing changed. To determine the nature of these changes, we performed ab initio modeling, including the multiphase procedure, with the geometric bodies (helices) and restoration of the PVA structure in solution using available high-resolution structures of the homologous CP from the PVY potyvirus, based on the SAXS data. As a result, for the first time, a low-resolution structure of the filamentous PVA virus, both intact and partially degraded, was elucidated under conditions close to natural. The far-UV circular dichroism spectra of the PVA and PVAΔ32 samples differed significantly in the amplitude and position of the main negative maximum. The extent of thermal denaturation of these samples in the temperature range of 20-55°C was also different. The data of transmission electron microscopy showed that the PVAΔ32 virions were mostly rod-shaped, in contrast to the flexible filamentous particles typical of the intact virus, which correlated well with the SAXS results. In general, structural analysis indicates an importance of the CP N-terminal domain for the vital functions of PVA, which can be used to develop a strategy for combating this plant pathogen.


Assuntos
Proteínas do Capsídeo/metabolismo , Potyvirus/ultraestrutura , Vírion/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Potyvirus/metabolismo , Espalhamento a Baixo Ângulo , Vírion/metabolismo , Difração de Raios X
6.
Molecules ; 26(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498932

RESUMO

Nanoparticles based on biocompatible methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG113-b-P(D,L)LAn) copolymers as potential vehicles for the anticancer agent oxaliplatin were prepared by a nanoprecipitation technique. It was demonstrated that an increase in the hydrophobic PLA block length from 62 to 173 monomer units leads to an increase of the size of nanoparticles from 32 to 56 nm. Small-angle X-ray scattering studies confirmed the "core-corona" structure of mPEG113-b-P(D,L)LAn nanoparticles and oxaliplatin loading. It was suggested that hydrophilic oxaliplatin is adsorbed on the core-corona interface of the nanoparticles during the nanoprecipitation process. The oxaliplatin loading content decreased from 3.8 to 1.5% wt./wt. (with initial loading of 5% wt./wt.) with increasing PLA block length. Thus, the highest loading content of the anticancer drug oxaliplatin with its encapsulation efficiency of 76% in mPEG113-b-P(D,L)LAn nanoparticles can be achieved for block copolymer with short hydrophobic block.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/química , Oxaliplatina/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
7.
J Biol Chem ; 294(47): 17790-17798, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31615897

RESUMO

Insulin receptor-related receptor (IRR) is a receptor tyrosine kinase of the insulin receptor family and functions as an extracellular alkali sensor that controls metabolic alkalosis in the regulation of the acid-base balance. In the present work, we sought to analyze structural features of IRR by comparing them with those of the insulin receptor, which is its closest homolog but does not respond to pH changes. Using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), we investigated the overall conformation of the recombinant soluble IRR ectodomain (ectoIRR) at neutral and alkaline pH. In contrast to the well-known inverted U-shaped (or λ-shaped) conformation of the insulin receptor, the structural models reconstructed at different pH values revealed that the ectoIRR organization has a "droplike" shape with a shorter distance between the fibronectin domains of the disulfide-linked dimer subunits within ectoIRR. We detected no large-scale pH-dependent conformational changes of ectoIRR in both SAXS and AFM experiments, an observation that agreed well with previous biochemical and functional analyses of IRR. Our findings indicate that ectoIRR's sensing of alkaline conditions involves additional molecular mechanisms, for example engagement of receptor juxtamembrane regions or the surrounding lipid environment.


Assuntos
Álcalis/metabolismo , Multimerização Proteica , Receptor de Insulina/química , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Domínios Proteicos , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
8.
Langmuir ; 34(50): 15470-15482, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30441905

RESUMO

The effect of the hydrophobic block length in diblock (PLLA x- b-PEO113, x = 64, 166, 418) and triblock (PLLA y- b-PEO91- b-PLLA y, y = 30, 52, 120) copolymers of l-lactic acid and ethylene oxide on the structure of micelles prepared by dialysis was studied by wide- and small-angle X-ray scattering in dilute aqueous solution, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and force spectroscopy. It was found that the size of the crystalline PLLA core is weakly dependent on the PLLA block length. In addition to individual micelles, a number of their micellar clusters were detected with characteristic distance between adjacent micelle cores decreasing with an increase in PLLA block length. This effect was explained by the change in the conformation of PEO chains forming the micellar corona because of their overcrowding. Force spectroscopy experiments also reveal a more stretched conformation of the PEO chains for the block copolymers with a shorter PLLA block. A model describing the structure of the individual micelles and their clusters was proposed.

9.
J Biol Chem ; 288(45): 32414-32423, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24068706

RESUMO

RecQ helicases, essential enzymes for maintaining genome integrity, possess the capability to participate in a wide variety of DNA metabolisms. They can initiate the homologous recombination repair pathway by unwinding damaged dsDNA and suppress hyper-recombination by promoting Holliday junction (HJ) migration. To learn how DrRecQ participates in the homologous recombination repair pathway, solution structures of Deinococcus radiodurans RecQ (DrRecQ) and its complexes with DNA substrates were investigated by small angle x-ray scattering. We found that the catalytic core and the most N-terminal HRDC (helicase and RNase D C-terminal) domain (HRDC1) undergo a conformational change to a compact state upon binding to a junction DNA. Furthermore, models of DrRecQ in complexes with two kinds of junction DNA (fork junction and HJ) were built based on the small angle x-ray scattering data, and together with the EMSA results, possible binding sites were proposed. It is demonstrated that two DrRecQ molecules bind to the opposite arms of HJ. This architecture is similar to the RuvAB complex and is hypothesized to be highly conserved in the other HJ migration proteins. This work provides us new clues to understand the roles DrRecQ plays in the RecFOR pathway.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , DNA Cruciforme/química , Deinococcus/enzimologia , Modelos Moleculares , RecQ Helicases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Deinococcus/genética , Estrutura Terciária de Proteína , RecQ Helicases/genética , RecQ Helicases/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
RNA ; 18(8): 1500-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22753782

RESUMO

RlmG is a specific AdoMet-dependent methyltransferase (MTase) responsible for N²-methylation of G1835 in 23S rRNA of Escherichia coli. Methylation of m²G1835 specifically enhances association of ribosomal subunits and provides a significant advantage for bacteria in osmotic and oxidative stress. Here, the crystal structure of RlmG in complex with AdoMet and its structure in solution were determined. The structure of RlmG is similar to that of the MTase RsmC, consisting of two homologous domains: the N-terminal domain (NTD) in the recognition and binding of the substrate, and the C-terminal domain (CTD) in AdoMet-binding and the catalytic process. However, there are distinct positively charged protuberances and a distribution of conserved residues contributing to the charged surface patch, especially in the NTD of RlmG for direct binding of protein-free rRNA. The RNA-binding properties of the NTD and CTD characterized by both gel electrophoresis mobility shift assays and isothermal titration calorimetry showed that NTD could bind RNA independently and RNA binding was achieved by the NTD, accomplished by a coordinating role of the CTD. The model of the RlmG-AdoMet-RNA complex suggested that RlmG may unfold its substrate RNA in the positively charged cleft between the NTD and CTD, and then G1835 disengages from its Watson-Crick pairing with C1905 and flips out to insert into the active site. Our structure and biochemical studies provide novel insights into the catalytic mechanism of G1835 methylation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , RNA Ribossômico 23S/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos
11.
Viruses ; 16(3)2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543792

RESUMO

The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.


Assuntos
Vírus de Plantas , Difração de Raios X , Microscopia Crioeletrônica , Espalhamento a Baixo Ângulo , Microscopia de Força Atômica/métodos , Raios X , Cristalografia por Raios X
12.
J Struct Biol ; 179(1): 29-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561317

RESUMO

RsmH is a specific AdoMet-dependent methyltransferase (MTase) responsible for N(4)-methylation of C1402 in 16S rRNA and conserved in almost all species of bacteria. The methylcytidine interacts with the P-site codon of the mRNA and increases ribosomal decoding fidelity. In this study, high resolution crystal structure (2.25Å) of Escherichia coli RsmH in complex with AdoMet and cytidine (the putative rRNA binding site) was determined. The structural analysis demonstrated that the complex consists of two distinct but structurally related domains: the typical MTase domain and the putative substrate recognition and binding domain. A deep pocket was found in the conserved AdoMet binding domain. It was also found that the cytidine bound far from AdoMet with the distance of 25.9Å. It indicates that the complex is not in a catalytically active state, and structural rearrangement of RsmH or the nucleotides neighboring C1402 may be necessary to trigger catalysis. Although there is only one molecule in the asymmetric unit of the crystals, RsmH can form a compact dimer across a crystallographic twofold axis. Further analysis of RsmH by small-angle X-ray scattering (SAXS) also revealed the dimer in solution, but with a more flexible conformation than that in crystal, likely resulting from the absence of the substrate. It implies that an active status of RsmH in vivo is achieved by a formation of the dimeric architecture. In general, crystal and solution structural analysis provides new information on the mechanism of the methylation of the fine-tuning ribosomal decoding center by the RsmH.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , RNA Ribossômico 16S/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Citidina/química , Dimerização , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Metilação , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Modelos Moleculares , Conformação Proteica , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , Espalhamento a Baixo Ângulo , Soluções/química , Difração de Raios X
13.
Biochem Biophys Res Commun ; 417(4): 1206-12, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22227191

RESUMO

DrRRA, a vital and recently discovered gene product of Deinococcus radiodurans, is a member of the OmpR/PhoB family of response regulators that couple with the cognate histidine kinase (HK) to form a typical two component system (TCS). It is known that the DrRRA is responsible for the transcriptional levels of numerous genes mostly relating to the stress response and DNA repair. In this paper, the crystal structures of the effector domain and full-length protein of DrRRA with resolutions of 1.6 and 2.3Å, respectively, are determined. These crystal structures depicted that DrRRA has the structural features of the OmpR/PhoB subfamily and were also confirmed by SAXS investigation of the protein in solution. Our data suggest that the receiver domain blocks the binding of DNA to the DNA recognition helix of effector domain; while the interdomain interface would be unwrapped, via the phosphorylation of receiver domain and/or the inducement of DNA, in order to provide DNA binding.


Assuntos
Proteínas de Bactérias/química , Deinococcus/metabolismo , Transativadores/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Deinococcus/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Transativadores/genética , Transativadores/metabolismo , Difração de Raios X
14.
J Mol Biol ; 433(10): 166930, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713674

RESUMO

DNA co-crystallization with Dps family proteins is a fundamental mechanism, which preserves DNA in bacteria from harsh conditions. Though many aspects of this phenomenon are well characterized, the spatial organization of DNA in DNA-Dps co-crystals is not completely understood, and existing models need further clarification. To advance in this problem we have utilized atomic force microscopy (AFM) as the main structural tool, and small-angle X-scattering (SAXS) to characterize Dps as a key component of the DNA-protein complex. SAXS analysis in the presence of EDTA indicates a significantly larger radius of gyration for Dps than would be expected for the core of the dodecamer, consistent with the N-terminal regions extending out into solution and being accessible for interaction with DNA. In AFM experiments, both Dps protein molecules and DNA-Dps complexes adsorbed on mica or highly oriented pyrolytic graphite (HOPG) surfaces form densely packed hexagonal structures with a characteristic size of about 9 nm. To shed light on the peculiarities of DNA interaction with Dps molecules, we have characterized individual DNA-Dps complexes. Contour length evaluation has confirmed the non-specific character of Dps binding with DNA and revealed that DNA does not wrap Dps molecules in DNA-Dps complexes. Angle analysis has demonstrated that in DNA-Dps complexes a Dps molecule contacts with a DNA segment of ~6 nm in length. Consideration of DNA condensation upon complex formation with small Dps quasi-crystals indicates that DNA may be arranged along the rows of ordered protein molecules on a Dps sheet.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Plasmídeos/química , Silicatos de Alumínio/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Cristalização , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Membranes (Basel) ; 11(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34677538

RESUMO

Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or "native" lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell.

16.
Polymers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671474

RESUMO

A series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups. A sharp increase in the zero-shear viscosity of dendrimer melts was found between the 5th and the 7th dendrimer generations, which was qualitatively identical to that previously reported for polycarbosilane dendrimers with butyl terminal groups. The viscoelastic properties of high-generation dendrimers seem to follow some general trends with an increase in the generation number, which are determined by the regular branching structure of dendrimers.

17.
J Fungi (Basel) ; 6(2)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325907

RESUMO

This work aimed to evaluate the fungicide activity of chitosan-silver nanocomposites (Ag-Chit-NCs) against Penicillium expansum from feed samples. The physicochemical properties of nanocomposites were characterized by X-ray fluorescence analysis (XRF), small-angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The morphological integrity of the nanohybrid was confirmed by electron transmission. By the data of RFA (X-ray fluorescent analysis), the contents of Ag in Ag-chitosan composite were 5.9 w/w%. The size distribution of the Ag nanoparticles incorporated in the chitosan matrix was investigated by SAXS. The main part of the size heterogeneity distribution in the chitosan matrix corresponds to the portion of small particles (3-4 nm). TEM analysis revealed a spherical morphology in the form of non-agglomerated caps, and 72% of the nanoparticles measured up to 4 nm. The minimum inhibitory concentration of NCs was evaluated in petri dishes. Three different concentrations were tested for antifungal activity against the mycotoxigenic P. expansum strain. Changes in the mycelium structure of P. expansum fungi by scanning electron microscopy (SEM) were observed to obtain information about the mode of action of Ag-Chit-NCs. It was shown that NC-Chit-NCs with sizes in the range from 4 to 10 nm have internalized sizes in cells, form agglomerates in the cytoplasm, and bind to cell organelles. Besides, their ability to influence protein and DNA fragmentation was examined in P. expansum. SDS-PAGE explains the apparent cellular protein response to the presence of various Ag-Chit-NCs. The intensity of P. expansum hyphal cell protein lines treated with Ag-Chit-NCs was very thin, indicating that high molecular weight proteins are largely prevented from entering the electrophoretic gel, which reflects cellular protein modification and possible damage caused by the binding of several protein fragments to Ag-Chit-NCs. The current results indicate that Ag-Chit-NCs <10 nm in size have significant antifungal activity against P. expansum, the causative agent of blue mold-contaminated dairy cattle feed.

18.
Biomolecules ; 10(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272694

RESUMO

Quaternary structure of CBS-pyrophosphatases (CBS-PPases), which belong to the PPases of family II, plays an important role in their function ensuring cooperative behavior of the enzymes. Despite an intensive research, high resolution structures of the full-length CBS-PPases are not yet available making it difficult to determine the signal transmission path from the regulatory to the active center. In the present work, small-angle X-ray scattering (SAXS) combined with size-exclusion chromatography was applied to determine the solution structures of the full-length wild-type CBS-PPases from three different bacterial species. Previously, in the absence of an experimentally determined full-length CBS-PPase structure, a homodimeric model of the enzyme based on known crystal structures of the CBS domain and family II PPase without this domain has been proposed. Our SAXS analyses demonstrate, for the first time, the existence of stable tetramers in solution for all studied CBS-PPases from different sources. Our findings show that further studies are required to establish the functional properties of these enzymes. This is important not only to enhance our understanding of the relation between CBS-PPases structure and function under normal conditions but also because some human pathogens harbor this class of enzymes.


Assuntos
Bactérias/enzimologia , Pirofosfatase Inorgânica/química , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Soluções
19.
J Fungi (Basel) ; 6(3)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708303

RESUMO

The integration of copper nanoparticles as antifungal agents in polymeric matrices to produce copper polymer nanocomposites has shown excellent results in preventing the growth of a wide variety of toxigenic fungi. Copper-chitosan nanocomposite-based chitosan hydrogels (Cu-Chit/NCs hydrogel) were prepared using a metal vapor synthesis (MVS) and the resulting samples were described by transmission electron microscopy (TEM), X-ray fluorescence analysis (XRF), and small-angle X-ray scattering (SAXS). Aflatoxin-producing medium and VICAM aflatoxins tests were applied to evaluate their ability to produce aflatoxins through various strains of Aspergillus flavus associated with peanut meal and cotton seeds. Aflatoxin production capacity in four fungal media outlets revealed that 13 tested isolates were capable of producing both aflatoxin B1 and B2. Only 2 A. flavus isolates (Af11 and Af 20) fluoresced under UV light in the A. flavus and parasiticus Agar (AFPA) medium. PCR was completed using two specific primers targeting aflP and aflA genes involved in the synthetic track of aflatoxin. Nevertheless, the existence of aflP and aflA genes indicated some correlation with the development of aflatoxin. A unique DNA fragment of the expected 236 bp and 412 bp bands for aflP and aflA genes in A. flavus isolates, although non-PCR fragments have been observed in many other Aspergillus species. This study shows the antifungal activity of Cu-Chit/NCs hydrogels against aflatoxigenic strains of A. flavus. Our results reveal that the antifungal activity of nanocomposites in vitro can be effective depending on the type of fungal strain and nanocomposite concentration. SDS-PAGE and native proteins explain the apparent response of cellular proteins in the presence of Cu-Chit/NCs hydrogels. A. flavus treated with a high concentration of Cu-Chit/NCs hydrogels that can decrease or produce certain types of proteins. Cu-Chit/NCs hydrogel decreases the effect of G6DP isozyme while not affecting the activity of peroxidase isozymes in tested isolates. Additionally, microscopic measurements of scanning electron microscopy (SEM) showed damage to the fungal cell membranes. Cu-Chit/NCS hydrogel is an innovative nano-biopesticide produced by MVS is employed in food and feed to induce plant defense against toxigenic fungi.

20.
J Biomol Struct Dyn ; 37(3): 671-690, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29388479

RESUMO

Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.


Assuntos
Vírus da Influenza A/química , Proteínas da Matriz Viral/química , Antivirais/farmacologia , Ligação Proteica , Multimerização Proteica , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA