Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genes Dev ; 23(2): 171-80, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19171781

RESUMO

The MRN complex (Mre11/RAD50/NBS1) and ATM (ataxia telangiectasia, mutated) are critical for the cellular response to DNA damage. ATM disruption causes ataxia telangiectasia (A-T), while MRN dysfunction can lead to A-T-like disease (ATLD) or Nijmegen breakage syndrome (NBS). Neuropathology is a hallmark of these diseases, whereby neurodegeneration occurs in A-T and ATLD while microcephaly characterizes NBS. To understand the contrasting neuropathology resulting from Mre11 or Nbs1 hypomorphic mutations, we analyzed neural tissue from Mre11(ATLD1/ATLD1) and Nbs1(DeltaB/DeltaB) mice after genotoxic stress. We found a pronounced resistance to DNA damage-induced apoptosis after ionizing radiation or DNA ligase IV (Lig4) loss in the Mre11(ATLD1/ATLD1) nervous system that was associated with defective Atm activation and phosphorylation of its substrates Chk2 and p53. Conversely, DNA damage-induced Atm phosphorylation was defective in Nbs1(DeltaB/DeltaB) neural tissue, although apoptosis occurred normally. We also conditionally disrupted Lig4 throughout the nervous system using Nestin-cre (Lig4(Nes-Cre)), and while viable, these mice showed pronounced microcephaly and a prominent age-related accumulation of DNA damage throughout the brain. Either Atm-/- or Mre11(ATLD1/ATLD1) genetic backgrounds, but not Nbs1(DeltaB/DeltaB), rescued Lig4(Nes-Cre) microcephaly. Thus, DNA damage signaling in the nervous system is different between ATLD and NBS and likely explains their respective neuropathology.


Assuntos
Apoptose , Ataxia Telangiectasia/fisiopatologia , Dano ao DNA/fisiologia , Neurônios/fisiologia , Síndrome de Quebra de Nijmegen/fisiopatologia , Transdução de Sinais/genética , Animais , Apoptose/efeitos da radiação , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia , Encéfalo/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/fisiologia , Feminino , Proteína Homóloga a MRE11 , Masculino , Camundongos , Camundongos Transgênicos , Microcefalia/patologia , Mutação , Neurônios/citologia , Neurônios/efeitos da radiação , Síndrome de Quebra de Nijmegen/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
EMBO J ; 31(5): 1177-89, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22266795

RESUMO

The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR-Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.


Assuntos
Encéfalo/embriologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/fisiologia , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Encéfalo/patologia , Proteínas de Ciclo Celular/deficiência , Proliferação de Células , Histocitoquímica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia , Proteínas Serina-Treonina Quinases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA