Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Physiol Plant ; 176(3): e14362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807422

RESUMO

All over the world, potato (Solanum tuberosum L.) production is constrained by several biotic and abiotic factors. Many techniques and mechanisms have been used to overcome these hurdles and increase food for the rising population. In crop plants, the mitogen-activated protein kinase (MAPK) cascade, a significant regulator of the MAPK pathway under various biotic and abiotic stress conditions, is one of the targets to increase productivity. MAPK plays a significant role under drought stress in potato. However, the function of MAPK in drought resistance in potato is poorly understood. In this study, we wanted to identify the function of StMAPK10 in the drought resistance in potato. StMAPK10 was up-regulated under drought conditions and dynamically modulated by abiotic stresses. Over-expression and down-regulation of StMAPK10 revealed that StMAPK10 stimulated potato growth under drought conditions, as demonstrated by changes in SOD, CAT, and POD activity, as well as H2O2, proline, and MDA content. StMAPK10 up-regulation exaggerated the drought resistance of the potato plant by uplifting antioxidant activities and photosynthetic indices. Overexpressed-StMAPK10 potato lines showed highly significant results for physiological and photosynthetic indices in response to drought stress, while knockdown expression showed opposite outcomes. Additionally, subcellular localization and phenotypic analysis of transgenic and non-transgenic plants substantiated the role of the increased expression of StMAPK10 against drought stress. The results could provide novel insights into the functionality of StMAPK10 in drought responses and conceivable mechanisms.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fotossíntese/genética , Plantas Geneticamente Modificadas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência à Seca
2.
Physiol Plant ; 176(3): e14366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812034

RESUMO

Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Plantas/genética , Plantas/metabolismo
3.
Physiol Plant ; 176(5): e14584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39431433

RESUMO

Autophagy is a highly conserved method of recycling cytoplasm components in eukaryotes. It plays an important role in plant growth and development, as well as in response to biotic and abiotic stresses. Although autophagy-related genes (ATGs) have been identified in several crop species, their particular role in potato (Solanum tuberosum L.) remains unclear. Several transcription factors and signaling genes in the transgenic lines of the model plant Arabidopsis thaliana, such as AtTSPO, AtBES1, AtPIP2;7, AtCOST1 as well as AtATI1/2, ATG8f, GFP-ATG8F-HA, AtDSK2, AtNBR1, AtHKT1 play crucial functions under drought and salt stresses, respectively. In this study, a total of 29 putative StATGs from 15 different ATG subfamilies in the potato genome were identified. Their physicochemical properties, evolutionary connections, chromosomal distribution, gene duplication, protein-protein interaction network, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. The results of qRT-PCR detection of StATG expression showed that 29 StATGs were differentially expressed in potato's leaves, flowers, petiole, stem, stolon, tuber, and root. StATGs were dynamically modulated by salt and drought stresses and up-regulated under salt and drought conditions. Our results showed that the StATG8a localized in the cytoplasm and the nucleus. Potato cultivar "Atlantic" overexpressing or downregulating StATG8a were constructed. Based on physiological, biochemical, and photosynthesis parameters, potato lines overexpressing StATG8a exhibited 9 times higher drought and salt tolerance compared to non-transgenic plants. In contrast, the potato plants with knockdown expression showed a downtrend in drought and salt tolerance compared to non-transgenic potato lines. These results could provide new insights into the function of StATG8a in salt and drought response and its possible mechanisms.


Assuntos
Autofagia , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Autofagia/genética , Estresse Fisiológico/genética , Família Multigênica , Filogenia , Estresse Salino/genética , Plantas Geneticamente Modificadas
4.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892181

RESUMO

Potato (Solanum tuberosum L.) is a major global food crop, and oxidative stress can significantly impact its growth. Previous studies have shown that its resistance to oxidative stress is mainly related to transcription factors, post-translational modifications, and antioxidant enzymes in vivo, but the specific molecular mechanisms remain unclear. In this study, we analyzed the transcriptome data from potato leaves treated with H2O2 and Methyl viologen (MV), and a control group, for 12 h. We enriched 8334 (CK vs. H2O2) and 4445 (CK vs. MV) differentially expressed genes (DEGs), respectively, and randomly selected 15 DEGs to verify the sequencing data by qRT-PCR. Gene ontology (GO) enrichment analysis showed that the DEGs were mainly concentrated in cellular components and related to molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that most of the DEGs were related to metabolic pathways, plant hormone signal transduction, MAPK-signaling pathway, and plant-pathogen interactions. In addition, several candidate transcription factors, mainly including MYB, WRKY, and genes associated with Ca2+-mediated signal transduction, were also found to be differentially expressed. Among them, the plant hormone genes Soltu.DM.03G022780 and Soltu.DM.06G019360, the CNGC gene Soltu.DM.06G006320, the MYB transcription factors Soltu.DM.06G004450 and Soltu.DM.09G002130, and the WRKY transcription factor Soltu.DM.06G020440 were noticeably highly expressed, which indicates that these are likely to be the key genes in the regulation of oxidative stress tolerance. Overall, these findings lay the foundation for further studies on the molecular mechanisms of potato leaves in response to oxidative stress.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Folhas de Planta , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408780

RESUMO

TCP transcription factors are involved in the regulation of plant growth and development and response to stress. Previous studies showed that StTCP7 was involved in the abiotic stress response of potato and positively regulated plant tolerance to drought stress. On the basis of previous studies, this study verified the downstream target genes of StTCP7 transcription factor binding through yeast one hybridization, double luciferase and other technologies, and conducted a preliminary analysis of the downstream target genes. The results showed that the StTCP7 transcription factor could bind the promoter region of StDAM5 and StGOLS2 and regulate the expression of their genes. qRT-PCR analysis showed that the expression level of StDAM5 gene was the highest in flower stalk tissue and the lowest in leaf stalk. The expression of StGOLS2 gene was the highest in stem, the second in stalk, and the lower in root. Both StDAM5 and StGOLS2 genes responded to abiotic stress treated with 200 mM NaCl, 20% PEG-6000 and 100 µM ABA. The expression levels of target genes StDAM5 and StGOLS2 were up-regulated in StTCP7 interfered plants. The protein encoded by the target gene StDAM5 belongs to the Type II MADS-box protein, which contains 238 amino acids and is an acidic hydrophilic protein. The analysis of StDAM5 promoter region showed that the promoter region of StDAM5 gene contained cis-acting elements such as light response and abscisic acid. Subcellular localization showed that StDAM5 protein was expressed in both nucleus and cytoplasm.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Solanum tuberosum , Estresse Fisiológico , Fatores de Transcrição , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542463

RESUMO

DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars ('Long10' (drought tolerant) and 'DXY' (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding.


Assuntos
Arabidopsis , Solanum tuberosum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistência à Seca , Filogenia , Melhoramento Vegetal , Arabidopsis/genética , Secas , DNA/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612475

RESUMO

MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety 'Atlantic' was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Secas , Saccharomyces cerevisiae , Cloreto de Sódio/farmacologia , Estresse Salino , Prolina , Superóxido Dismutase , Água
8.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768844

RESUMO

One of the main impacts of drought stress on plants is an excessive buildup of reactive oxygen species (ROS). A large number of ·OH, highly toxic to cells, will be produced if too much ROS is not quickly cleared. At the heart of antioxidant enzymes is superoxide dismutase (SOD), which is the first antioxidant enzyme to function in the active oxygen scavenging system. To shield cells from oxidative injury, SOD dismutation superoxide anion free radicals generate hydrogen peroxide and molecule oxygen. Cu/Zn SOD is a kind of SOD antioxidant enzyme that is mostly found in higher plants' cytoplasm and chloroplasts. Other studies have demonstrated the significance of the miR398s family of miRNAs in the response of plants to environmental stress. The cleavage location of potato stu-miR398b-3p on Cu/Zn SOD mRNA was verified using RLM-5'RACE. Using the potato variety 'Desiree', the stu-miR398b-3p overexpression mutant was created, and transgenic lines were raised. SOD activity in transgenic lines was discovered to be decreased during drought stress, although other antioxidant enzyme activities were mostly unaltered. Transgenic plants will wilt more quickly than wild-type plants without irrigation. Additionally, this demonstrates that the response of Cu/Zn SOD to drought stress is adversely regulated by potato stu-miR398b-3p.


Assuntos
Solanum tuberosum , Espécies Reativas de Oxigênio , Superóxido Dismutase-1/genética , Solanum tuberosum/genética , Antioxidantes , Resistência à Seca , Superóxido Dismutase/genética , Superóxidos , Zinco
9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835025

RESUMO

Sensor-responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) are plant-specific Ca2+ receptors, and the CBL-CIPK module is widely involved in plant growth and development and a large number of abiotic stress response signaling pathways. In this study, the potato cv. "Atlantic" was subjected to a water deficiency treatment and the expression of StCIPK18 gene was detected by qRT-PCR. The subcellular localization of StCIPK18 protein was observed by a confocal laser scanning microscope. The StCIPK18 interacting protein was identified and verified by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). StCIPK18 overexpression and StCIPK18 knockout plants were constructed. The phenotypic changes under drought stress were indicated by water loss rate, relative water content, MDA and proline contents, and CAT, SOD and POD activities. The results showed that StCIPK18 expression was upregulated under drought stress. StCIPK18 is localized in the cell membrane and cytoplasm. Y2H shows the interaction between StCIPK18 and StCBL1, StCBL4, StCBL6 and StCBL8. BiFC further verifies the reliability of the interaction between StCIPK18 and StCBL4. Under drought stress, StCIPK18 overexpression decreased the water loss rate and MDA, and increased RWC, proline contents and CAT, SOD and POD activities; however, StCIPK18 knockout showed opposite results, compared with the wild type, in response to drought stress. The results can provide information for the molecular mechanism of the StCIPK18 regulating potato response to drought stress.


Assuntos
Arabidopsis , Solanum tuberosum , Solanum tuberosum/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Arabidopsis/genética , Reprodutibilidade dos Testes , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases/metabolismo , Secas , Água/metabolismo , Superóxido Dismutase/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
10.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175598

RESUMO

Soil salinity has become an increasingly serious problem worldwide, greatly limiting crop development and yield, and posing a major challenge to plant breeding. Basic leucine zipper (bZIP) transcription factors are the most widely distributed and conserved transcription factors and are the main regulators controlling various plant response processes against external stimuli. The bZIP protein contains two domains: a highly conserved, DNA-binding alkaline region, and a diverse leucine zipper, which is one of the largest transcription factor families in plants. Plant bZIP is involved in many biological processes, such as flower development, seed maturation, dormancy, and senescence, and plays an important role in abiotic stresses such as salt damage, drought, cold damage, osmotic stress, mechanical damage, and ABA signal response. In addition, bZIP is involved in the regulation of plant response to biological stresses such as insect pests and pathogen infection through salicylic acid, jasmonic acid, and ABA signal transduction pathways. This review summarizes and discusses the structural characteristics and functional characterization of the bZIP transcription factor group, the bZIP transcription factor complex and its molecular regulation mechanisms related to salt stress resistance, and the regulation of transcription factors in plant salt stress resistance. This review provides a theoretical basis and research ideas for further exploration of the salt stress-related functions of bZIP transcription factors. It also provides a theoretical basis for crop genetic improvement and green production in agriculture.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
11.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768743

RESUMO

Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.


Assuntos
Solanum tuberosum , Enzimas de Conjugação de Ubiquitina , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Sequência de Aminoácidos , Saccharomyces cerevisiae/metabolismo
12.
Physiol Plant ; 174(1): e13475, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34114235

RESUMO

Protein ubiquitination is one of the most important posttranslational modifications in eukaryotic cells, and it is involved in a variety of biological processes, including abiotic stress response. The ubiquitination modification is highly specific, which depends on the accurate recognition of substrate proteins by ubiquitin ligase. Plant U-box (PUB) proteins are a class of ubiquitin ligases, multiple members of which have shown to participate in water-deficit stress in Arabidopsis and rice. U-box gene family and large-scale profiling of the ubiquitome in potato has not been reported to date, although it is one of the most important food crops. The identified 66 U-box genes from the potato genome database were unevenly distributed on 10 chromosomes. These StPUBs have a large number of tandem repeat sequences. Analysis of gene expression characteristics revealed that many StPUBs responded to abiotic stress. Three hundred and fourteen lys modification sites were identified under PEG-induced drought stress, which were distributed on 200 proteins, with 25 differential ubiquitination modification sites, most of which were up-regulated. The ubiquitination modification in potato protein was enhanced under PEG-induced drought stress, and U-box ubiquitin ligase was involved. This study provides an overall strategy and rich data set to clarify the effects of ubiquitination on potatoes under PEG-induced drought stress and the ubiquitination modification involved in potato U-box genes in response to PEG-induced drought stress.


Assuntos
Secas , Solanum tuberosum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Mol Breed ; 42(6): 31, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37312964

RESUMO

Biotic and abiotic stresses are the main constrain of potato (Solanum tuberosum L.) production all over the world. To overcome these hurdles, many techniques and mechanisms have been used for increasing food demand for increasing population. One of such mechanism is mitogen-activated protein kinase (MAPK) cascade, which is significance regulators of MAPK pathway under various biotic and abiotic stress conditions in plants. However, the acute role in potato for various biotic and abiotic resistance is not fully understood. In eukaryotes including plants, MAPK transfer information from sensors to responses. In potato, biotic and abiotic stresses, as well as a range of developmental responses including differentiation, proliferation, and cell death in plants, MAPK plays an essential role in transduction of diverse extracellular stimuli. Different biotic and abiotic stress stimuli such as pathogen (bacteria, virus, and fungi, etc.) infections, drought, high and low temperatures, high salinity, and high or low osmolarity are induced by several MAPK cascade and MAPK gene families in potato crop. The MAPK cascade is synchronized by numerous mechanisms, including not only transcriptional regulation but also through posttranscriptional regulation such as protein-protein interactions. In this review, we will discuss the recent detailed functional analysis of certain specific MAPK gene families which are involved in resistance to various biotic and abiotic stresses in potato. This study will also provide new insights into functional analysis of various MAPK gene families in biotic and abiotic stress response as well as its possible mechanism.

14.
Mol Biol Rep ; 49(6): 4683-4697, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35366758

RESUMO

BACKGROUND: The phosphatidylethanolamine-binding protein (PEBP) gene family is involved in regulating many plant traits. Genome-wide identification of PEPB members and knowledge of their responses to heat stress may assist genetic improvement of potato (Solanum tuberosum). METHODS AND RESULTS: We identified PEBP gene family members from both the recently-updated, long-reads-based reference genome (DM v6.1) and the previous short-reads-based annotation (PGSC DM v3.4) of the potato reference genome and characterized their heat-induced gene expression using RT-PCR and RNA-Seq. Fifteen PEBP family genes were identified from DM v6.1 and named as StPEBP1 to StPEBP15 based on their locations on 6 chromosomes and were classified into FT, TFL, MFT, and PEBP-like subfamilies. Most of the StPEBP genes were found to have conserved motifs 1 to 5. Tandem or segmental duplications were found between StPEBP genes in seven pairs. Heat stress induced opposite expression patterns of certain FT and TFL members but involving different members in leaves, roots and tubers. CONCLUSION: The long-reads-based genome assembly and annotation provides a better genomic resource for identification of PEBP family genes. Heat stress tends to decrease FT gene activities but increases TFL gene activities, but this opposite expression involves different FT/TFL pairs in leaves, roots, and tubers. This tissue-specific expression pattern of PEBP members may partly explain why different potato organs differ in their sensitivities to heat stress. Our study provides candidate PEBP family genes and relevant information for genetic improvement of heat tolerance in potato and may help understand heat-induced responses in other plants.


Assuntos
Solanum tuberosum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Resposta ao Choque Térmico/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico/genética
15.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955930

RESUMO

Calcium-dependent protein kinases (CDPK) are implicated in signaling transduction in eukaryotic organisms. It is largely unknown whether StCDPK28 plays a role in the response to water deficiency and osmotic stress in potato plants (Solanum tuberosum L.). Potato cv. Zihuabai was cultivated under natural, moderate, and severe water deficiency conditions; to induce osmotic stress, potato plants were treated with 10% or 20% PEG. StCDPK28-overexpression and StCDPK28-knockdown plants were constructed. StCDPKs were evaluated by qRT-PCR. The subcellular location of the StCDPK28 protein was observed with confocal scanning laser microscopy. Phenotypic changes were indicated by photosynthetic activity, the contents of H2O2, MDA and proline, and the activities of CAT, SOD and POD. Results showed water deficiency and osmotic stress altered StCDPK expression patterns. StCDPK28 exhibited a membrane, cytosolic and nuclear localization. Water deficiency and osmotic stress induced StCDPK28 upregulation. Photosynthetic activity was enhanced by StCDPK28 overexpression, while decreased by StCDPK2 knockdown under water deficiency and osmotic stress. StCDPK28 overexpression decreased H2O2 and MDA, and increased proline, while StCDPK28 knockdown showed reverse results, compared with the wild type, in response to water deficiency and osmotic stress. StCDPK28 overexpression increased the activities of CAT, SOD and POD, while StCDPK28-knockdown plants indicated the reverse trend under water deficiency and osmotic stress conditions. Regulation of StCDPK28 expression could be a promising approach to improve the tolerance ability of potato plants in response to drought or high salt media.


Assuntos
Solanum tuberosum , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Pressão Osmótica , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Solanum tuberosum/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Água/metabolismo
16.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499135

RESUMO

Stomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density. The expression analysis showed that stu-miR827 was obviously repressed by drought stresses and then rapidly increased after rewatering. Suppressing the expression of stu-miR827 transgenic potato lines showed an increase in stomatal density, correlating with a weaker drought resistance compared with wildtype potato lines. In addition, StWRKY48 was identified as the target gene of stu-miR827, and the expression of StWRKY48 was obviously induced by drought stresses and was greatly upregulated in stu-miR827 knockdown transgenic potato lines, suggesting its involvement in the drought stress response. Importantly, the expression of genes associated with stomata development, such as SDD (stomatal density and distribution) and TMM (too many mouths), was seriously suppressed in transgenic lines. Altogether, these observations demonstrated that suppression of stu-miR827 might lead to overexpression of StWRKY48, which may contribute to negatively regulating the drought adaptation of potato by increasing the stomatal density. The results may facilitate functional studies of miRNAs in the process of drought tolerance in plants.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estômatos de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Secas , Folhas de Planta/metabolismo , Água/metabolismo
17.
Plant Cell Rep ; 40(3): 491-506, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388892

RESUMO

KEY MESSAGE: StMAPK11 overexpression promotes potato growth, physiological activities and photosynthesis under drought conditions. Mitogen-activated protein kinases (MAPKs) are import regulators of MAPK pathway in plants under drought condition. However, the critical role in potato (Solanum tuberosum L.) drought resistance is not fully understood. In this study, we aimed to explore the role of StMAPK11 under drought stress. The result of RT-qPCR for assay of StMAPKs expression demonstrated that 15 StMAPKs were differentially expressed in leaves, flowers, petioles, stamens, pistils, stems, stolons, roots, tubers and tuber peels of potato. StMAPKs was dynamically modulated by abiotic stresses and plant hormone treatments, and StMAPK11 was apparently up-regulated under drought conditions. Therefore, the vectors pCPB-StMAPK11 and pCPBI121-miRmapk11 for over-expression and down-regulation of StMAPK11 were constructed, respectively, and introduced into potato cultivar Atlantic. The result showed that StMAPK11 promoted potato growth under drought conditions, as well as the physiological activities evidenced by changes in SOD, CAT and POD activity and H2O2, proline and MDA content. StMAPK11 up-regulation intensified drought resistance of potato plant by elevating antioxidant activities and photosynthesis. Moreover, we consolidated the protective role of StMAPK11 in tobacco and Arabidopsis against drought stress. The result could provide new insights into the function of StMAPK11 in drought response and its possible mechanisms.


Assuntos
Secas , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Prolina/metabolismo , Estresse Fisiológico , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
18.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948331

RESUMO

The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor-responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.


Assuntos
Genoma de Planta/genética , Pressão Osmótica/fisiologia , Proteínas de Plantas/genética , Solanum tuberosum/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Família Multigênica/genética , Filogenia , Desenvolvimento Vegetal/genética , Transdução de Sinais/genética
19.
Physiol Mol Biol Plants ; 27(10): 2421-2431, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34744375

RESUMO

Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.

20.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326224

RESUMO

Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Animais , Catálise , Humanos , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA