Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 23(17): 4842-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886687

RESUMO

Compounds containing a quinuclidine scaffold are promising drug candidates for pharmacological management of the central nervous system (CNS) pathologies implicating nAChRs. We have carried out binding affinity and in-silico docking studies of arylmethylene quinuclidine-like derivatives at the α4ß2 receptor using in-vitro receptor binding assay and comparative modeling, respectively. We found that introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative resulted in a 266-fold increase in binding affinity and confers agonism properties. By contrast, addition of a phenyl group to 3-benzylidene quinuclidine derivative only results in an 18-fold increase in binding affinity, without conferring agonism. We also found that docking into the orthosteric binding site of the α4ß2 nAChR is consistent with the fact that the basic nitrogen atom donates a hydrogen-bond to the carbonyl group of the highly conserved Trp-149, as initially observed by Dougherty and co-workers.(1) The experimentally-observed trend in binding affinity at both α4ß2 and α3ß4 nAChRs was accurately and independently confirmed by quantum mechanics (QM)-polarized docking. The reduction in binding affinity to the α3ß4 subtype primarily results from a dampening of both coulombic and cation-π interactions.


Assuntos
Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Quinuclidinas/química , Quinuclidinas/farmacologia , Receptores Nicotínicos/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
2.
Bioorg Med Chem Lett ; 23(5): 1450-5, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23352509

RESUMO

We have carried out a pharmacological evaluation of arylmethylene quinuclidine derivatives interactions with human α3ß4 nAChRs subtype, using cell-based receptor binding, calcium-influx, electrophysiological patch-clamp assays and molecular modeling techniques. We have found that the compounds bind competitively to the α3ß4 receptor with micromolar affinities and some of the compounds behave as non-competitive antagonists (compounds 1, 2 and 3), displaying submicromolar IC(50) values. These evidences suggest a mixed mode of action for these compounds, having interactions at the orthosteric site and more pronounced interactions at an allosteric site to block agonist effects. One of the compounds, 1-benzyl-3-(diphenylmethylene)-1-azoniabicyclo[2.2.2]octane chloride (compound 3), exhibited poorly reversible use-dependent block of α3ß4 channels. We also found that removal of a phenyl group from compound 1 confers a partial agonism to the derived analog (compound 6). Introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative (compound 7) increases agonism potency at the α3ß4 receptor subtype. Docking into the orthosteric binding site of a α3ß4 protein structure derived by comparative modeling accurately predicted the experimentally-observed trend in binding affinity. Results supported the notion that binding requires a hydrogen bond formation between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the conserved Trp-149.


Assuntos
Quinuclidinas/química , Quinuclidinas/farmacologia , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade
3.
J Neurosci ; 22(6): 2023-34, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11896142

RESUMO

Studies of Ca channels expressed in oocytes have identified kurtoxin as a promising tool for functional and structural studies of low-threshold T-type Ca channels. This peptide, isolated from the venomous scorpion Parabuthus transvaalicus, inhibits low-threshold alpha1G and alpha1H Ca channels expressed in oocytes with relatively high potency and high selectivity. Here we report its effects on Ca channel currents, carried by 5 mm Ba(2+) ions, in rat central and peripheral neurons. In thalamic neurons 500 nm kurtoxin inhibited T-type Ca channel currents almost completely (90.2 +/- 2.5% at -85 mV; n = 6). Its selectivity, however, was less than expected because it also reduced the composite high-threshold Ca channel current recorded in these cells (46.1 +/- 6.9% at -30 mV; n = 6). In sympathetic and thalamic neurons, 250-500 nm kurtoxin partially inhibited N-type and L-type Ca channel currents, respectively. It similarly reduced the high-threshold Ca channel current that remains after a blockade of P-type, N-type, and L-type Ca channels in thalamic neurons. In contrast, kurtoxin facilitated steady-state P-type Ba currents in Purkinje neurons (by 34.9 +/- 3.7%; n = 10). In all cases the kurtoxin effect was voltage-dependent and entailed a modification of channel gating. Exposure to kurtoxin slowed current activation kinetics, although its effects on deactivation varied with the channel types. Kurtoxin thus appears as a unique gating-modifier that interacts with different Ca channel types with high affinity. This unusual property and the complex gating modifications it induces may facilitate future studies of gating in voltage-dependent ion channels.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Venenos de Escorpião/farmacologia , Animais , Bário/metabolismo , Bário/farmacologia , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo P/efeitos dos fármacos , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/metabolismo , Células Cultivadas , Potenciais da Membrana/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Células de Purkinje/citologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Tálamo/citologia , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
4.
J Pharmacol Toxicol Methods ; 50(2): 93-101, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15385083

RESUMO

INTRODUCTION: In vitro evaluation of drug effects on hERG K(+) channels is a valuable tool for identifying potential proarrhythmic side effects in drug safety testing. Patch-clamp recording of hERG K(+) current in mammalian cells can accurately evaluate drug effects, but the methodology has not been standardized, and results vary widely. Our objective was to evaluate two potential sources of variability: the temperature at which recordings are performed and the voltage pulse protocol used to activate hERG K(+) channels expressed in HEK293 cells. METHODS: A panel of 15 drugs that spanned a broad range of potency for hERG inhibition and pharmacological class was evaluated at both room and near-physiological temperatures using several patch-clamp voltage protocols. Concentration-response analysis was performed with three stimulus protocols: 0.5- and 2-s step pulses, or a step-ramp pattern. RESULTS: Block by 2 of the 15 drugs tested, d,l-sotalol (antiarrhythmic) and erythromycin (antibiotic), was markedly temperature sensitive. hERG inhibition measured using a 2-s step-pulse protocol underestimated erythromycin potency compared with results obtained with a step-ramp protocol. Using conservative acceptance criteria and the step-ramp protocol, the IC(50) values for hERG block differed by less than twofold for 15 drugs. DISCUSSION: Data obtained at near-physiological temperatures using a step-ramp pattern are highly repeatable and provide a conservative safety evaluation of hERG inhibition.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Células Cultivadas , Canal de Potássio ERG1 , Estimulação Elétrica , Canais de Potássio Éter-A-Go-Go , Humanos , Concentração Inibidora 50 , Técnicas de Patch-Clamp , Reprodutibilidade dos Testes , Temperatura , Transfecção
5.
J Biomol Screen ; 18(1): 116-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960782

RESUMO

High-throughput compound screening using electrophysiology-based assays represents an important tool for biomedical research and drug discovery programs. The recent development and availability of devices capable of performing high-throughput electrophysiology-based screening have brought the need to validate these tools by producing data that are consistent with results obtained with conventional electrophysiological methods. In this study, we compared the response properties of hα3ß4 and hα4ß2 nicotinic receptors to their endogenous ligand acetylcholine (ACh) using three separate electrophysiology platforms: Dynaflow (low-throughput, manual system), PatchXpress 7000A (medium-throughput automated platform), and IonWorks Barracuda (high-throughput automated platform). We found that despite the differences in methodological approaches between these technologies, the EC(50) values from the ACh dose-response curves were consistent between all three platforms. In addition, we have validated the IonWorks Barracuda for both competitive and uncompetitive inhibition assays by using the competitive nicotinic antagonist dihydro-beta-erythroidin (DHßE) and uncompetitive nicotinic antagonist mecamylamine. Furthermore, we have demonstrated the utility of a custom-written algorithm for generating dose-response curves from multiple extrapolated current metrics that allows for discriminating between competitive and uncompetitive inhibition while maintaining high-throughput capacity. This study provides validation of the consistency of results using low-, medium-, and high-throughput electrophysiology platforms and supports their use for screening nicotinic compounds.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Acetilcolina/farmacologia , Animais , Ligação Competitiva , Células CHO , Cricetinae , Di-Hidro-beta-Eritroidina/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Mecamilamina/farmacologia , Técnicas de Patch-Clamp , Receptores Nicotínicos/metabolismo , Padrões de Referência
6.
J Med Chem ; 55(22): 9793-809, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23126648

RESUMO

(2S,3R)-N-[2-(Pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]benzo[b]furan-2-carboxamide (7a, TC-5619), a novel selective agonist of the α7 neuronal nicotinic acetylcholine receptor, has been identified as a promising drug candidate for the treatment of cognitive impairment associated with neurological disorders. 7a demonstrated more than a thousand-fold separation between the affinities for the α7 and α4ß2 receptor subtypes and had no detectable effects on muscle or ganglionic nicotinic receptor subtypes, indicating a marked selectivity for the central nervous system over the peripheral nervous system. Results obtained from homology modeling and docking explain the observed selectivity. 7a had positive effects across cognitive, positive, and negative symptoms of schizophrenia in animal models and was additive or synergistic with the antipsychotic clozapine. Compound 7a, as an augmentation therapy to the standard treatment with antipsychotics, demonstrated encouraging results on measures of negative symptoms and cognitive dysfunction in schizophrenia and was well tolerated in a phase II clinical proof of concept trial in patients with schizophrenia.


Assuntos
Benzofuranos/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Quinuclidinas/farmacologia , Receptores Nicotínicos/química , Animais , Benzofuranos/síntese química , Células CHO , Cricetinae , Canal de Potássio ERG1 , Humanos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Quinuclidinas/síntese química , Ratos , Relação Estrutura-Atividade , Receptor Nicotínico de Acetilcolina alfa7
7.
J Med Chem ; 55(22): 9929-45, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23025891

RESUMO

The potential for nicotinic ligands with affinity for the α4ß2 or α7 subtypes to treat such diverse diseases as nicotine addiction, neuropathic pain, and neurodegenerative and cognitive disorders has been exhibited clinically for several compounds while preclinical activity in relevant in vivo models has been demonstrated for many more. For several therapeutic programs, we sought nicotinic ligands with various combinations of affinity and function across both subtypes, with an emphasis on dual α4ß2-α7 ligands, to explore the possibility of synergistic effects. We report here the structure-activity relationships (SAR) for a novel series of 7-heteroaryl-3-azabicyclo[3.3.1]non-6-enes and characterize many of the analogues for activity at multiple nicotinic subtypes.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neuroblastoma/tratamento farmacológico , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Cálcio/metabolismo , Células Cultivadas , Eletrofisiologia , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Ligantes , Estrutura Molecular , Subunidades Proteicas , Estereoisomerismo , Relação Estrutura-Atividade
8.
Arch Drug Inf ; 2(3): 51-57, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19915712

RESUMO

INTRODUCTION: Non-clinical evaluation of a medication's potential to induce cardiac toxicity is recommended by regulatory agencies. 4-Aminopyridine (fampridine) is a potassium channel blocker with the demonstrated ability to improve walking ability in patients with multiple sclerosis. We evaluated the in vitro effects of 4-aminopyridine on the human ether-à-go-go-related gene (hERG) channel current, since hERG current inhibition is associated with QT interval prolongation-a precursor to torsade de pointes (TdP). METHODS: 4-Aminopyridine was evaluated in concentrations ranging from 0.1 mM to 30 mM in human embryonic kidney 293 cells stably transfected with the hERG gene; terfenadine 60 nM was used as a positive control. RESULTS AND DISCUSSION: We observed concentration-dependent inhibition of hERG current with 4-aminopyridine doses between 0.3 and 30 mM. The concentration of 3.8 mM resulting in 50% inhibition (IC(50)) is approximately three orders of magnitude higher than expected therapeutic plasma concentrations, suggesting 4-aminopyridine has low potential for prolonging QT interval or inducing TdP.

9.
J Neurosci Methods ; 182(1): 17-24, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19481112

RESUMO

Historically, the identification of alpha4beta2 nicotinic acetylcholine receptor ligands has been based on high-throughput radioligand binding, rubidium efflux assays and Ca++ flux assays using a fluorometric imaging plate reader (FLIPR). Among other approaches, low-throughput electrophysiological assays in Xenopus oocytes and two channel application "liquid filament" systems for mammalian cells have been commonly used. More recent technical innovations that have been introduced into the field of electrophysiology allow for automated simultaneous multi-channel operation. Here we report the development and optimization of a high-throughput electrophysiological assay for identifying functionally active alpha4beta2 nicotinic receptor ligands using such a system. Characterization of the test system yielded results comparable to those obtained by other investigators using conventional electrophysiological assays. For example, the concentration-response relationships obtained for alpha4beta2 receptor activation by acetylcholine and nicotine were best described by biphasic Hill equations, and the inhibition of alpha4beta2 receptor currents by the nicotinic antagonist dihydro-beta-erythroidine was consistent with previously published results. Functional up-regulation of alpha4beta2 receptors by prolonged exposure to nicotine or lower temperature was also confirmed. Using this methodology we were able to characterize the activation of alpha4beta2 receptors by multiple compounds in a mammalian cell expression system, exemplifying its utility for rapid identification of novel nicotinic ligands within a screening cascade. Our results demonstrate the utility of this electrophysiological tool for the discovery of alpha4beta2 nicotinic acetylcholine receptor ligands with potential applications in numerous clinical indications.


Assuntos
Bioensaio/métodos , Eletroquímica/métodos , Células Epiteliais/metabolismo , Potenciais da Membrana/fisiologia , Nicotina/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA