Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem J ; 479(5): 583-607, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244142

RESUMO

For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.


Assuntos
Insulina , Neoplasias , Humanos , Neoplasias/epidemiologia , Obesidade
2.
J Inherit Metab Dis ; 37(1): 83-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23653225

RESUMO

Niemann-Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post-mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C-X-C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL-3, IL-10 and IL-13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.


Assuntos
Biomarcadores/metabolismo , Regulação da Expressão Gênica , Inflamação/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Adolescente , Alelos , Animais , Encéfalo/patologia , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CXCL5/metabolismo , Criança , Pré-Escolar , Complemento C3/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Adulto Jovem
3.
Wellcome Open Res ; 7: 267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37065726

RESUMO

Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1 -/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1 -/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease.

4.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561908

RESUMO

CONTEXT: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease, affecting approximately 3 in 10 obese children worldwide. OBJECTIVE: We aimed to investigate the potential relationship between gut microbiota and NAFLD in obese youth, while considering the role of PNPLA3 rs738409, a strong genetic contributor to NAFLD. DESIGN: In this cross-sectional study, participants completed an abdominal magnetic resonance imaging to measure hepatic fat fraction (HFF), oral glucose tolerance test, and PNPLA3 rs738409 genotyping. Fecal samples were collected to analyze the V4 region of the 16S rRNA gene for intestinal bacteria characterization. SETTING: Yale Pediatric Obesity Clinic. PARTICIPANTS: Obese youth (body mass index >95th percentile) with NAFLD (HFF ≥5.5%; n = 44) and without NAFLD (HFF <5.5%; n = 29). MAIN OUTCOME MEASURE: Shannon-Wiener diversity index values and proportional bacterial abundance by NAFLD status and PNPLA3 genotype. RESULTS: Subjects with NAFLD had decreased bacterial alpha-diversity compared with those without NAFLD (P = 0.013). Subjects with NAFLD showed a higher Firmicutes to Bacteroidetes (F/B) ratio (P = 0.019) and lower abundance of Bacteroidetes (P = 0.010), Prevotella (P = 0.019), Gemmiger (P = 0.003), and Oscillospira (P = 0.036). F/B ratio, Bacteroidetes, Gemmiger, and Oscillospira were associated with HFF when controlling for group variations. We also observed an additive effect on HFF by PNPLA3 rs738409 and Gemmiger, and PNPLA3 rs738409 and Oscillospira. CONCLUSIONS: Obese youth with NAFLD have a different gut microbiota composition than those without NAFLD. These differences were still statistically significant when controlling for factors associated with NAFLD, including PNPLA3 rs738409.


Assuntos
Microbioma Gastrointestinal/fisiologia , Predisposição Genética para Doença , Lipase/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Obesidade Infantil/complicações , Adolescente , Criança , Estudos Transversais , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/genética , Fatores de Risco
5.
Cell Metab ; 32(5): 751-766.e11, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147485

RESUMO

The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.


Assuntos
Mitocôndrias/metabolismo , Fosfoenolpiruvato/metabolismo , Animais , Homeostase , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piruvato Quinase/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Diabetes Technol Ther ; 21(3): 101-104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30688521

RESUMO

OBJECTIVE: We have shown that "euglycemic DKA" in patients with type 1 diabetes receiving a sodium-glucose cotransporter 2-inhibitor (SGLT2i) is due to normal increases in rates of ketogenesis but blunted increases in plasma glucose levels. In this analysis, we assessed whether rescue treatment of early ketoacidosis with insulin is altered by SGLT2i use. RESEARCH DESIGN AND METHODS: Participants received 0.2 U/kg of aspart insulin after two 6-h interruptions of basal insulin that increased beta-hydroxybutyrate (BHB) by 1.2 ± 0.7 mmol/L before and by 1.5 ± 0.2 mmol/L during canagliflozin treatment. BHB and free fatty acid (FFA) were monitored every 30 min for 120 min after receiving a 0.2 U/kg subcutaneous injection of aspart insulin. RESULTS: Ten adults (23 ± 5 years) were studied. During the 120 min after rescue therapy with insulin, the reductions in BHB and FFA were nearly identical between the pre- and during canagliflozin treatment studies, respectively (-1.27 ± 0.76 and -1.13 ± 0.69, P = 0.671 for BHB and -0.50 ± 0.35 vs. -0.41 ± 0.41, P = 0.603 for FFA). CONCLUSION: These data indicate that turning ketogenesis off, as well as on, does not appear to be affected by SGLT2i use.


Assuntos
Canagliflozina/administração & dosagem , Diabetes Mellitus Tipo 1/complicações , Cetoacidose Diabética/tratamento farmacológico , Insulina Aspart/administração & dosagem , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Ácido 3-Hidroxibutírico/sangue , Adulto , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Masculino , Resultado do Tratamento
7.
PLoS One ; 7(10): e47845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144710

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a fatal, neurodegenerative disorder for which there is no definitive therapy. In NPC1, a pathological cascade including neuroinflammation, oxidative stress and neuronal apoptosis likely contribute to the clinical phenotype. While the genetic cause of NPC1 is known, we sought to gain a further understanding into the pathophysiology by identifying differentially expressed proteins in Npc1 mutant mouse cerebella. Using two-dimensional gel electrophoresis and mass spectrometry, 77 differentially expressed proteins were identified in Npc1 mutant mice cerebella compared to controls. These include proteins involved in glucose metabolism, detoxification/oxidative stress and Alzheimer disease-related proteins. Furthermore, members of the fatty acid binding protein family, including FABP3, FABP5 and FABP7, were found to have altered expression in the Npc1 mutant cerebellum relative to control. Translating our findings from the murine model to patients, we confirm altered expression of glutathione s-transferase α, superoxide dismutase, and FABP3 in cerebrospinal fluid of NPC1 patients relative to pediatric controls. A subset of NPC1 patients on miglustat, a glycosphingolipid synthesis inhibitor, showed significantly decreased levels of FABP3 compared to patients not on miglustat therapy. This study provides an initial report of dysregulated proteins in NPC1 which will assist with further investigation of NPC1 pathology and facilitate implementation of therapeutic trials.


Assuntos
Biomarcadores/metabolismo , Cerebelo/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Proteoma/análise , Proteômica/métodos , Doença de Alzheimer/genética , Animais , Biomarcadores/líquido cefalorraquidiano , Western Blotting , Cerebelo/patologia , Criança , Eletroforese em Gel Bidimensional , Feminino , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pessoa de Meia-Idade , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Análise de Sequência com Séries de Oligonucleotídeos , Córtex Pré-Frontal/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA