Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neth Heart J ; 31(11): 434-443, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37594612

RESUMO

BACKGROUND: The pressure-derived parameters fractional flow reserve (FFR) and the emerging instantaneous wave-free ratio (iFR) are the most widely applied invasive coronary physiology indices to guide revascularisation. However, approximately 15-20% of intermediate stenoses show discordant FFR and iFR, and therapeutical consensus is lacking. AIMS: We sought to associate hyperaemic stenosis resistance index, coronary flow reserve (CFR) and coronary flow capacity (CFC) to FFR/iFR discordance. METHODS: We assessed pressure and flow measurements of 647 intermediate lesions (593 patients) of two multi-centre international studies. RESULTS: FFR and iFR were discordant in 15% of all lesions (97 out of 647). FFR+/iFR- lesions had similar hyperaemic average peak velocity (hAPV), CFR and CFC as FFR-/iFR- lesions, whereas FFR-/iFR+ lesions had similar hAPV, CFR and CFC as FFR+/iFR+ lesions (p > 0.05 for all). FFR+/iFR- lesions were associated with lower baseline stenosis resistance, but not hyperaemic stenosis resistance, compared with FFR-/iFR+ lesions (p < 0.001). CONCLUSIONS: Discordance with FFR+/iFR- is characterised by maximal flow values, CFR, and CFC patterns similar to FFR-/iFR- concordance that justifies conservative therapy. Discordance with FFR-/iFR+ on the other hand, is characterised by low flow values, CFR, and CFC patterns similar to iFR+/FFR+ concordance that may benefit from percutaneous coronary intervention.

2.
Am Heart J ; 222: 139-146, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062172

RESUMO

BACKGROUND: It remains uncertain if invasive coronary physiology beyond fractional flow reserve (FFR) can refine lesion selection for revascularization or provide additional prognostic value. Coronary flow reserve (CFR) equals the ratio of hyperemic to baseline flow velocity and has a wealth of invasive and noninvasive data supporting its validity. Because of fundamental physiologic relationships, binary classification of FFR and CFR disagrees in approximately 30%-40% of cases. Optimal management of these discordant cases requires further study. AIM: The aim of the study was to determine the prognostic value of combined FFR and CFR measurements to predict the 24-month rate of major adverse cardiac events. Secondary end points include repeatability of FFR and CFR, angina burden, and the percentage of successful FFR/CFR measurements which will not be excluded by the core laboratory. METHODS: This prospective, nonblinded, nonrandomized, and multicenter study enrolled 455 subjects from 12 sites in Europe and Japan. Patients underwent physiologic lesion assessment using the 0.014" Philips Volcano ComboWire XT that provides simultaneous pressure and Doppler velocity sensors. Intermediate coronary lesions received only medical treatment unless both FFR (≤0.8) and CFR (<2.0) were below thresholds. The primary outcome is a 24-month composite of death from any cause, myocardial infarction, and revascularization. CONCLUSION: The DEFINE-FLOW study will determine the prognostic value of invasive CFR assessment when measured simultaneously with FFR, with a special emphasis on discordant classifications. Our hypothesis is that lesions with an intact CFR ≥ 2.0 but reduced FFR ≤ 0.8 will have a 2-year outcome with medical treatment similar to lesions with FFR> 0.80 and CFR ≥ 2.0. Enrollment has been completed, and final follow-up will occur in November 2019.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Estenose Coronária/diagnóstico , Vasos Coronários/fisiopatologia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Monitorização Fisiológica/instrumentação , Idoso , Cateterismo Cardíaco/métodos , Estenose Coronária/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Ecocardiografia Doppler , Feminino , Seguimentos , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
3.
Magn Reson Med ; 84(1): 467-483, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31828822

RESUMO

PURPOSE: Bolus-based dynamic contrast agent (CA) perfusion measurements of the heart are subject to systematic errors due to CA bolus dispersion in the coronary arteries. To better understand these effects on quantification of myocardial blood flow and myocardial perfusion reserve (MPR), an in-silico model of the coronary arteries down to the pre-arteriolar vessels has been developed. METHODS: In this work, a computational fluid dynamics analysis is performed to investigate these errors on the basis of realistic 3D models of the left and right porcine coronary artery trees, including vessels at the pre-arteriolar level. Using advanced boundary conditions, simulations of blood flow and CA transport are conducted at rest and under stress. These are evaluated with regard to dispersion (assessed by the width of CA concentration time curves and associated vascular transport functions) and errors of myocardial blood flow and myocardial perfusion reserve quantification. RESULTS: Contrast agent dispersion increases with traveled distance as well as vessel diameter, and decreases with higher flow velocities. Overall, the average myocardial blood flow errors are -28% ± 16% and -8.5% ± 3.3% at rest and stress, respectively, and the average myocardial perfusion reserve error is 26% ± 22%. The calculated values are different in the left and right coronary tree. CONCLUSION: Contrast agent dispersion is dependent on a complex interplay of several different factors characterizing the cardiovascular bed, including vessel size and integrated vascular length. Quantification errors evoked by the observed CA dispersion show nonnegligible distortion in dynamic CA bolus-based perfusion measurements. We expect future improvements of quantitative perfusion measurements to make the systematic errors described here more apparent.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Animais , Meios de Contraste , Circulação Coronária , Hidrodinâmica , Imageamento por Ressonância Magnética , Perfusão , Suínos
4.
Am J Physiol Heart Circ Physiol ; 312(5): H992-H1001, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213403

RESUMO

The present study sought to compare the temporal relation between maximal coronary flow (peak hyperemia) and minimal coronary-to-aortic pressure ratio (Pd/Pa) for intracoronary (IC) and intravenous (IV) adenosine administration. Peak hyperemia is assumed to coincide with the minimal Pd/Pa value. However, this has not been confirmed for systemic hemodynamic variations during IV adenosine infusion. Hemodynamic responses to IV and IC adenosine administration were obtained in 12 patients (14 lesions) using combined IC pressure and flow velocity measurements. A fluid dynamic model was used to predict the change in Pd/Pa for different stenosis severities and varying Pa Hemodynamic variability during IV adenosine hyperemia was greater than during IC adenosine, as assessed by the coefficient of variation. During IV adenosine, flow velocity peaked 28 ± 4 (SE) s after the onset of hyperemia, while Pd/Pa reached a minimum (0.82 ± 0.01) 22 ± 7 s later (P < 0.05), when Pa had declined by 6.1% and hyperemic velocity by 4.5% (P < 0.01). Model outcomes corroborated the role of variable Pa in this dissociation. In contrast, maximal flow and minimal Pd/Pa coincided for IC adenosine, with IV-equivalent peak velocities and a higher Pd/Pa ratio (0.86 ± 0.01, P < 0.01). Hemodynamic variability during continuous IV adenosine infusion can lead to temporal dissociation of minimal Pd/Pa and peak hyperemia, in contrast to IC adenosine injection, where maximal velocity and minimal Pd/Pa coincide. Despite this variability, stenosis hemodynamics remained stable with both ways of adenosine administration. Our findings suggest advantages of IC over IV adenosine to identify maximal hyperemia from pressure-only measurements.NEW & NOTEWORTHY Systemic hemodynamic variability during intravenous adenosine infusion produces substantial temporal dissociation between peak hyperemia appraised by coronary flow velocity and the minimal distal-to-aortic pressure ratio commonly used to determine functional stenosis severity. This dissociation was absent for intracoronary adenosine administration and tended to be mitigated in patients receiving Ca2+ antagonists.


Assuntos
Adenosina/farmacologia , Pressão Sanguínea/fisiologia , Fármacos Cardiovasculares/farmacologia , Hiperemia/induzido quimicamente , Hiperemia/fisiopatologia , Adenosina/administração & dosagem , Idoso , Aorta , Pressão Arterial/efeitos dos fármacos , Fármacos Cardiovasculares/administração & dosagem , Estudos de Coortes , Vasos Coronários , Feminino , Reserva Fracionada de Fluxo Miocárdico/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
5.
Basic Res Cardiol ; 112(6): 61, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905113

RESUMO

Baseline assessment of functional stenosis severity has been proposed as a practical alternative to hyperemic indices. However, intact autoregulation mechanisms may affect intracoronary hemodynamics. The aim of this study was to investigate the effect of changes in aortic pressure (Pa) and heart rate (HR) on baseline coronary hemodynamics and functional stenosis assessment. In 15 patients (55 ± 3% diameter stenosis) Pa, intracoronary pressure (Pd) and flow velocity were obtained at control, and during atrial pacing at 120 bpm, increased Pa (+30 mmHg) with intravenous phenylephrine (PE), and elevated Pa while pacing at sinus heart rate (PE + sHR). We derived rate pressure product (RPP = systolic Pa × HR), baseline microvascular resistance (BMR = Pd/velocity), and stenosis resistance [BSR = (Pa - Pd)/velocity] as well as whole-cycle Pd/Pa. Tachycardia (120 ± 1 bpm) raised RPP by 74% vs. CONTROL: Accordingly, BMR decreased by 27% (p < 0.01) and velocity increased by 36% (p < 0.05), while Pd/Pa decreased by 0.05 ± 0.02 (p < 0.05) and BSR remained similar to control. Raising Pa to 121 ± 3 mmHg (PE) with concomitant reflex bradycardia increased BMR by 26% (p < 0.001) at essentially unchanged RPP and velocity. Consequently, BSR and Pd/Pa were only marginally affected. During PE + sHR, velocity increased by 21% (p < 0.01) attributable to a 46% higher RPP (p < 0.001). However, BMR, BSR, and Pd/Pa remained statistically unaffected. Nonetheless, the interventions tended to increase functional stenosis severity, causing Pd/Pa and BSR of borderline lesions to cross the diagnostic threshold. In conclusion, coronary microvascular adaptation to physiological conditions affecting metabolic demand at rest influences intracoronary hemodynamics, which may lead to altered basal stenosis indices used for clinical decision-making.


Assuntos
Adaptação Fisiológica/fisiologia , Pressão Arterial/fisiologia , Estenose Coronária/diagnóstico , Estenose Coronária/fisiopatologia , Frequência Cardíaca/fisiologia , Circulação Coronária/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Microsc Microanal ; 23(1): 77-87, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228173

RESUMO

Development of collateral vessels, arteriogenesis, may protect against tissue ischemia, however, quantitative data on this process remain scarce. We have developed a technique for replicating the entire arterial network of ischemic rat hindlimbs in three dimensions (3D) based on vascular casting and automated sequential cryo-imaging. Various dilutions of Batson's No. 17 with methyl methacrylate were evaluated in healthy rats, with further protocol optimization in ischemic rats. Penetration of the resin into the vascular network greatly depended on dilution; the total length of casted vessels below 75 µm was 13-fold higher at 50% dilution compared with the 10% dilution. Dilutions of 25-30%, with transient clamping of the healthy iliac artery, were optimal for imaging the arterial network in unilateral ischemia. This protocol completely filled the lumina of small arterioles and collateral vessels. These appeared as thin anastomoses in healthy legs and increasingly larger vessels during ligation (median diameter 1 week: 63 µm, 4 weeks: 127 µm). The presented combination of quality casts with high-resolution cryo-imaging enables automated, detailed 3D analysis of collateral adaptation, which furthermore can be combined with co-registered 3D distributions of fluorescent molecular imaging markers reflecting biological activity or perfusion.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/patologia , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Imageamento Tridimensional/métodos , Isquemia/diagnóstico por imagem , Isquemia/patologia , Animais , Arteríolas/diagnóstico por imagem , Arteríolas/patologia , Molde por Corrosão , Resinas Epóxi , Técnicas Histológicas/métodos , Ligadura , Masculino , Metilmetacrilatos/química , Ratos , Ratos Sprague-Dawley
7.
Am J Physiol Heart Circ Physiol ; 311(4): H855-H870, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402665

RESUMO

The branching pattern of the coronary vasculature is a key determinant of its function and plays a crucial role in shaping the pressure and velocity wave forms measured for clinical diagnosis. However, although multiple scaling laws have been proposed to characterize the branching pattern, the implications they have on wave propagation remain unassessed to date. To bridge this gap, we have developed a new theoretical framework by combining the mathematical formulation of scaling laws with the wave propagation theory in the pulsatile flow regime. This framework was then validated in multiple species using high-resolution cryomicrotome images of porcine, canine, and human coronary networks. Results demonstrate that the forward well-matchedness (no reflection for pressure/flow waves traveling from the coronary stem toward the microcirculation) is a salient feature in the coronary vasculature, and this result remains robust under many scenarios of the underlying pulse wave speed distribution assumed in the network. This result also implies a significant damping of the backward traveling waves, especially for smaller vessels (radius, <0.3 mm). Furthermore, the theoretical prediction of increasing area ratios (ratio between the area of the mother and daughter vessels) in more symmetric bifurcations found in the distal circulation was confirmed by experimental measurements. No differences were observed by clustering the vessel segments in terms of transmurality (from epicardium to endocardium) or perfusion territories (left anterior descending, left circumflex, and right coronary artery).


Assuntos
Pressão Sanguínea/fisiologia , Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Microcirculação/fisiologia , Fluxo Pulsátil/fisiologia , Animais , Vasos Coronários/anatomia & histologia , Cães , Humanos , Modelos Cardiovasculares , Suínos
8.
Am J Physiol Heart Circ Physiol ; 310(10): H1304-12, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26945083

RESUMO

The aim of this study was to determine if reliable patient-specific wall shear stress (WSS) can be computed when diameter-based scaling laws are used to impose the boundary conditions for computational fluid dynamics. This study focused on mildly diseased human coronary bifurcations since they are predilection sites for atherosclerosis. Eight patients scheduled for percutaneous coronary intervention were imaged with angiography. The velocity proximal and distal of a bifurcation was acquired with intravascular Doppler measurements. These measurements were used for inflow and outflow boundary conditions for the first set of WSS computations. For the second set of computations, absolute inflow and outflow ratios were derived from geometry-based scaling laws based on angiography data. Normalized WSS maps per segment were obtained by dividing the absolute WSS by the mean WSS value. Absolute and normalized WSS maps from the measured-approach and the scaled-approach were compared. A reasonable agreement was found between the measured and scaled inflows, with a median difference of 0.08 ml/s [-0.01; 0.20]. The measured and the scaled outflow ratios showed a good agreement: 1.5 percentage points [-19.0; 4.5]. Absolute WSS maps were sensitive to the inflow and outflow variations, and relatively large differences between the two approaches were observed. For normalized WSS maps, the results for the two approaches were equivalent. This study showed that normalized WSS can be obtained from angiography data alone by applying diameter-based scaling laws to define the boundary conditions. Caution should be taken when absolute WSS is assessed from computations using scaled boundary conditions.


Assuntos
Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Modelos Cardiovasculares , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Ultrassonografia Doppler , Ultrassonografia de Intervenção/métodos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Humanos , Hidrodinâmica , Placa Aterosclerótica , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estresse Mecânico
9.
Am J Physiol Heart Circ Physiol ; 311(1): H239-50, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208158

RESUMO

Following myocardial infarction and atherosclerotic lesion development, monocytes contribute to myocardial protection and repair, while also partaking in myocardial ischemic injury. The balance of proinflammatory and reparative monocyte subsets is crucial in governing these therapeutic and pathological outcomes. Myocardial ischemic damage displays heterogeneity across the myocardium, whereby the subendocardium shows greatest vulnerability to ischemic damage. In this study we examined the transmural distribution of monocyte subsets in response to gradual coronary artery occlusion. CD14(+) monocytes were isolated from peripheral blood of New Zealand White rabbits and divided into two subgroups based on the expression of CD62L. We employed a rabbit model of progressive coronary artery obstruction to induce chronic myocardial ischemia and reinfused fluorescently labeled autologous monocytes. The distribution of fluorescently labeled autologous monocytes was examined with a high-resolution three-dimensional imaging cryomicrotome. The subepicardial layer contained the largest infiltration of both monocyte subgroups, with a significantly greater proportion of CD14(+)CD62L(+) monocytes at the time when the ischemic area was at a maximum. By targeting CD13(+) angiogenic vessels, we confirmed the presence of angiogenesis in epicardial and midmyocardial regions. These myocardial regions demonstrated the highest level of infiltration of both monocyte subsets. Furthermore, CD14(+)CD62L(+) monocytes showed significantly greater migration towards monocyte chemoattractant protein-1, greater adhesive capacity, and higher expression of C-C chemokine receptor type-2 relative to CD14(+)CD62L(-) monocytes. In conclusion, we note selective subepicardial distribution of monocyte subpopulations, with changes in proportion depending on the time after onset of coronary narrowing. Selective homing is supported by divergent migratory properties of each respective monocyte subgroup.


Assuntos
Quimiotaxia de Leucócito , Estenose Coronária/patologia , Vasos Coronários/patologia , Monócitos/patologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Biomarcadores/sangue , Antígenos CD13/metabolismo , Células Cultivadas , Constrição , Estenose Coronária/sangue , Estenose Coronária/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Selectina L/sangue , Receptores de Lipopolissacarídeos/sangue , Monócitos/metabolismo , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Fenótipo , Coelhos , Regeneração , Fatores de Tempo
10.
Birth Defects Res A Clin Mol Teratol ; 106(3): 213-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26691208

RESUMO

BACKGROUND: Acardiac twinning is a rare anomaly of monochorionic twin pregnancies. Acardiac fetuses lack a functional heart but are passively perfused by arterial blood from their pump co-twin. Although four acardiac morphological types have been classified, the various paths of anatomical and circulatory acardiac twin development, and the potential influence of acardiac size and perfusion flow as possible predictors of pump twin morbidity and mortality are poorly understood. This report presents the first high resolution three-dimensional reconstruction of the vasculature of an acardiac twin by cryomicrotome imaging. CASE: A small, approximately 7.5-cm-diameter ball-shaped acardius amorphous of 30 5/7 weeks had caused pump twin cardiac decompensation that necessitated an emergency cesarian section. The pump twin survived well. The acardiac body had a partially intact vascular system with large diameter arteries and veins and multiple zones that appeared devoid of perfusion. The three-dimensional reconstruction showed neither recognizable organ structures nor identifiable blood vessels except for the umbilical artery and vein. CONCLUSION: Our case showed a small acardiac mass with large diameter vessels and consequential low outflow resistance that caused pump twin complications. This indicates that the development of a method that allows pump twin prognosis is likely more successful if based on the use of acardiac versus pump twin perfusion flows than on body volume ratios.


Assuntos
Doenças em Gêmeos/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Gêmeos Monozigóticos , Cesárea , Microscopia Crioeletrônica , Doenças em Gêmeos/congênito , Doenças em Gêmeos/patologia , Doenças em Gêmeos/cirurgia , Feminino , Feto , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/cirurgia , Humanos , Microtomia , Gravidez , Ultrassonografia Pré-Natal
11.
Eur Heart J ; 36(47): 3312-9a, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26033981

RESUMO

Wide attention for the appropriateness of coronary stenting in stable ischaemic heart disease (IHD) has increased interest in coronary physiology to guide decision making. For many, coronary physiology equals the measurement of coronary pressure to calculate the fractional flow reserve (FFR). While accumulating evidence supports the contention that FFR-guided revascularization is superior to revascularization based on coronary angiography, it is frequently overlooked that FFR is a coronary pressure-derived estimate of coronary flow impairment. It is not the same as the direct measures of coronary flow from which it was derived, and which are critical determinants of myocardial ischaemia. This review describes why coronary flow is physiologically and clinically more important than coronary pressure, details the resulting limitations and clinical consequences of FFR-guided clinical decision making, describes the scientific consequences of using FFR as a gold standard reference test, and discusses the potential of coronary flow to improve risk stratification and decision making in IHD.


Assuntos
Circulação Coronária/fisiologia , Isquemia Miocárdica/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Tomada de Decisão Clínica , Estenose Coronária/diagnóstico , Estenose Coronária/fisiopatologia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Humanos , Microcirculação/fisiologia , Isquemia Miocárdica/diagnóstico , Revascularização Miocárdica/estatística & dados numéricos , Seleção de Pacientes
12.
Microvasc Res ; 100: 59-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25963318

RESUMO

Particle skimming is a phenomenon where particles suspended in fluid flowing through vessels distribute disproportionately to bulk fluid volume at junctions. Microspheres are considered a gold standard of intra-organ perfusion measurements and are used widely in studies of flow distribution and quantification. It has previously been hypothesised that skimming at arterial junctions is responsible for a systematic over-estimation of myocardial perfusion from microspheres at the subendocardium. Our objective is to integrate coronary arterial structure and microsphere distribution, imaged at high resolution, to test the hypothesis of microsphere skimming in a porcine left coronary arterial (LCA) network. A detailed network was reconstructed from cryomicrotome imaging data and a Poiseuille flow model was used to simulate flow. A statistical approach using Clopper-Pearson confidence intervals was applied to determine the prevalence of skimming at bifurcations in the LCA. Results reveal that microsphere skimming is most prevalent at bifurcations in the larger coronary arteries, namely the epicardial and transmural arteries. Bifurcations at which skimming was identified have significantly more asymmetric branching parameters. This finding suggests that when using thin transmural segments to quantify flow from microspheres, a skimming-related deposition bias may result in underestimation of perfusion in the subepicardium, and overestimation in the subendocardium.


Assuntos
Circulação Coronária , Vasos Coronários/fisiologia , Corantes Fluorescentes/administração & dosagem , Hemodinâmica , Imagem de Perfusão , Técnicas de Réplica , Animais , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Vasos Coronários/anatomia & histologia , Preparação de Coração Isolado , Imageamento por Ressonância Magnética , Microesferas , Modelos Anatômicos , Modelos Cardiovasculares , Imagem de Perfusão/métodos , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Suínos
13.
J Mol Cell Cardiol ; 76: 196-204, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25179912

RESUMO

Cellular imaging modalities are important for revealing the behavior and role of monocytes in response to neovascularization progression in coronary artery disease. In this study we aimed to develop methods for high-resolution three-dimensional (3D) imaging and quantification of monocytes relative to the entire coronary artery network using a novel episcopic imaging modality. In a series of ex vivo experiments, human umbilical vein endothelial cells and CD14+ monocytes were labeled with fluorescent live cell tracker probes and infused into the coronary artery network of excised rat hearts by a Langendorff perfusion method. Coronary arteries were subsequently infused with fluorescent vascular cast material and processed with an imaging cryomicrotome, whereby each heart was consecutively cut (5 µm slice thickness) and block face imaged at appropriate excitation and emission wavelengths. The resulting image stacks yielded 3D reconstructions of the vascular network and the location of cells administered. Successful detection and quantification of single cells and cell clusters were achieved relative to the coronary network using customized particle detection software. These methods were then applied to an in vivo rabbit model of chronic myocardial ischemia in which autologous monocytes were isolated from peripheral blood, labeled with a fluorescent live cell tracker probe and re-infused into the host animal. The processed 3D image stacks revealed homing of monocytes to the ischemic myocardial tissue. Monocytes detected in the ischemic tissue were predominantly concentrated in the mid-myocardium. Vessel segmentation identified coronary collateral connections relative to monocyte localization. This study established a novel imaging platform to efficiently determine the localization of monocytes in relation to the coronary microvascular network. These techniques are invaluable for investigating the role of monocyte populations in the progression of coronary neovascularization in animal models of chronic and sub-acute myocardial ischemia.


Assuntos
Vasos Coronários/imunologia , Monócitos/fisiologia , Isquemia Miocárdica/imunologia , Animais , Movimento Celular , Células Cultivadas , Vasos Coronários/patologia , Secções Congeladas , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Microscopia de Fluorescência , Isquemia Miocárdica/patologia , Coelhos , Ratos Wistar
14.
J Physiol ; 592(5): 1047-60, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24366260

RESUMO

Functional collateral vessels often stem from outward remodelling of pre-existing connections between perfusion territories. Knowledge of the distribution and morphology of innate collateral connections may help in identifying myocardial areas with protection against risk for ischaemia. The coronary network of six healthy canine hearts was investigated with an imaging cryomicrotome. Innate collateral connections ranged from 286 to 1015 µm in diameter. Left ventricular collateral density (number per gram of tissue) was about five in the subendocardium vs. 2.5 in the mid-myocardium (P < 0.01) and 1.3 in the epicardium (P < 0.01). Subendocardial collateral connections were oriented parallel to the long axis of the heart. For the major coronary arteries, five times more intracoronary than intercoronary connections were found, while their median diameter and interquartile range were not significantly different, at 96.1 (16.9) vs. 94.7 (18.9) µm. Collateral vessels connecting crowns from sister branches from a stem are denoted intercrown connections and those within crowns intracrown connections. The number of intercrown connections was related to the mean tissue weight of the crowns (y = 0.73x - 0.33, r2 = 0.85, P < 0.0001). This relation was likewise found to describe intercoronary connections. The median collateral diameter and length were independent of the tissue volumes bridged. We conclude that connectivity and morphology of the innate collateral network are distributed with no preference for intra- or intercrown connections, independent of stem diameter, including epicardial arteries. This renders all sites of the myocardium equally protected in case of coronary artery disease. The orientation of subendocardial collateral vessels indicates the longitudinal direction of subendocardial collateral flow.


Assuntos
Circulação Colateral , Circulação Coronária , Vasos Coronários/anatomia & histologia , Endocárdio/anatomia & histologia , Ventrículos do Coração/anatomia & histologia , Modelos Anatômicos , Modelos Cardiovasculares , Animais , Cães , Técnicas In Vitro
15.
Basic Res Cardiol ; 109(2): 405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24515727

RESUMO

Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δs/Δt. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p < 0.005), while DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.


Assuntos
Vasos Coronários/fisiologia , Microcirculação/fisiologia , Modelos Cardiovasculares , Análise de Onda de Pulso/métodos , Vasodilatação/fisiologia , Adenosina/administração & dosagem , Idoso , Angina Estável/fisiopatologia , Angina Estável/terapia , Vasos Coronários/efeitos dos fármacos , Feminino , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Humanos , Hiperemia/induzido quimicamente , Hiperemia/fisiopatologia , Masculino , Microcirculação/efeitos dos fármacos , Pessoa de Meia-Idade , Nitroglicerina/administração & dosagem , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem
16.
J Cardiovasc Magn Reson ; 16: 82, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25315438

RESUMO

BACKGROUND: Cardiovascular Magnetic Resonance (CMR) myocardial perfusion imaging has the potential to evolve into a method allowing full quantification of myocardial blood flow (MBF) in clinical routine. Multiple quantification pathways have been proposed. However at present it remains unclear which algorithm is the most accurate. An isolated perfused, magnetic resonance (MR) compatible pig heart model allows very accurate titration of MBF and in combination with high-resolution assessment of fluorescently-labeled microspheres represents a near optimal platform for validation. We sought to investigate which algorithm is most suited to quantify myocardial perfusion by CMR at 1.5 and 3 Tesla using state of the art CMR perfusion techniques and quantification algorithms. METHODS: First-pass perfusion CMR was performed in an MR compatible blood perfused pig heart model. We acquired perfusion images at physiological flow ("rest"), reduced flow ("ischaemia") and during adenosine-induced hyperaemia ("hyperaemia") as well as during coronary occlusion. Perfusion CMR was performed at 1.5 Tesla (n = 4 animals) and at 3 Tesla (n = 4 animals). Fluorescently-labeled microspheres and externally controlled coronary blood flow served as reference standards for comparison of different quantification strategies, namely Fermi function deconvolution (Fermi), autoregressive moving average modelling (ARMA), exponential basis deconvolution (Exponential) and B-spline basis deconvolution (B-spline). RESULTS: All CMR derived MBF estimates significantly correlated with microsphere results. The best correlation was achieved with Fermi function deconvolution both at 1.5 Tesla (r = 0.93, p < 0.001) and at 3 Tesla (r = 0.9, p < 0.001). Fermi correlated significantly better with the microspheres than all other methods at 3 Tesla (p < 0.002). B-spline performed worse than Fermi and Exponential at 1.5 Tesla and showed the weakest correlation to microspheres (r = 0.74, p < 0.001). All other comparisons were not significant. At 3 Tesla exponential deconvolution performed worst (r = 0.49, p < 0.001). CONCLUSIONS: CMR derived quantitative blood flow estimates correlate with true myocardial blood flow in a controlled animal model. Amongst the different techniques, Fermi function deconvolution was the most accurate technique at both field strengths. Perfusion CMR based on Fermi function deconvolution may therefore emerge as a useful clinical tool providing accurate quantitative blood flow assessment.


Assuntos
Circulação Coronária , Corantes Fluorescentes , Imageamento por Ressonância Magnética/métodos , Microbolhas , Isquemia Miocárdica/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Meios de Contraste , Oclusão Coronária/diagnóstico , Oclusão Coronária/fisiopatologia , Modelos Animais de Doenças , Hiperemia/diagnóstico , Hiperemia/fisiopatologia , Interpretação de Imagem Assistida por Computador , Técnicas In Vitro , Isquemia Miocárdica/fisiopatologia , Compostos Organometálicos , Perfusão , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Suínos , Fatores de Tempo
17.
Angew Chem Int Ed Engl ; 53(24): 6272-5, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24847728

RESUMO

No forensic method exists that can reliably estimate the age of fingermarks found at a crime scene. Information on time passed since fingermark deposition is desired as it can be used to distinguish between crime related and unrelated fingermarks and to support or refute statements made by the fingermark donors. We introduce a non-contact method that can estimate the age of fingermarks. Fingermarks were approached as protein-lipid mixtures and an age-estimation model was build based on the expected protein and lipid oxidation reactions. Two measures of oxidation are required from the fingermark to estimate its age: 1) the relative amount of fluorescent oxidation products 2) the rate at which these products are formed. Fluorescence spectroscopy was used to obtain these measures. We tested the method on 44 fingermarks and were able to estimate the age of 55% of the male fingermarks, up to three weeks old with an uncertainty of 1.9 days.


Assuntos
Dermatoglifia , Espectrometria de Fluorescência/métodos , Fatores Etários , Oxirredução
18.
J Cell Mol Med ; 17(9): 1128-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23910946

RESUMO

Pre-clinical studies aimed at treating ischemic heart disease (i.e. stem cell- and growth factor therapy) often consider restoration of the impaired microvascular circulation as an important treatment goal. However, serial in vivo measurement hereof is often lacking. The purpose of this study was to evaluate the applicability of intracoronary pressure and flow velocity as a measure of microvascular resistance in a large animal model of chronic myocardial infarction (MI). Myocardial infarction was induced in Dalland Landrace pigs (n = 13; 68.9 ± 4.1 kg) by a 75-min. balloon occlusion of the left circumflex artery (LCX). Intracoronary pressure and flow velocity parameters were measured simultaneously at rest and during adenosine-induced hyperemia, using the Combowire (Volcano) before and 4 weeks after MI. Various pressure- and/or flow-derived indices were evaluated. Hyperemic microvascular resistance (HMR) was significantly increased by 28% in the infarct-related artery, based on a significantly decreased peak average peak flow velocity (pAPV) by 20% at 4 weeks post-MI (P = 0.03). Capillary density in the infarct zone was decreased compared to the remote area (658 ± 207/mm(2) versus 1650 ± 304/mm(2) , P = 0.017). In addition, arterioles in the infarct zone showed excessive thickening of the alpha smooth muscle actin (αSMA) positive cell layer compared to the remote area (33.55 ± 4.25 µm versus 14.64 ± 1.39 µm, P = 0.002). Intracoronary measurement of HMR successfully detected increased microvascular resistance that might be caused by the loss of capillaries and arteriolar remodelling in the chronic infarcted pig heart. Thus, HMR may serve as a novel outcome measure in pre-clinical studies for serial assessment of microvascular circulation.


Assuntos
Circulação Coronária/fisiologia , Microcirculação/fisiologia , Microvasos/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Resistência Vascular/fisiologia , Actinas/metabolismo , Animais , Arteríolas/metabolismo , Arteríolas/patologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Doença Crônica , Cicatriz/patologia , Cicatriz/fisiopatologia , Matriz Extracelular/metabolismo , Feminino , Microvasos/patologia , Infarto do Miocárdio/patologia
19.
Circulation ; 126(22): 2565-74, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23124033

RESUMO

BACKGROUND: The mechanisms of reduced angina on second exertion in patients with coronary arterial disease, also known as the warm-up angina phenomenon, are poorly understood. Adaptations within the coronary and systemic circulations have been suggested but never demonstrated in vivo. In this study we measured central and coronary hemodynamics during serial exercise. METHODS AND RESULTS: Sixteen patients (15 male, 61±4.3 years) with a positive exercise ECG and exertional angina completed the protocol. During cardiac catheterization via radial access, they performed 2 consecutive exertions (Ex1, Ex2) using a supine cycle ergometer. Throughout exertions, distal coronary pressure and flow velocity were recorded in the culprit vessel using a dual sensor wire while central aortic pressure was recorded using a second wire. Patients achieved a similar workload in Ex2 but with less ischemia than in Ex1 (P<0.01). A 33% decline in aortic pressure augmentation in Ex2 (P<0.0001) coincided with a reduction in tension time index, a major determinant of left ventricular afterload (P<0.001). Coronary stenosis resistance was unchanged. A sustained reduction in coronary microvascular resistance resulted in augmented coronary flow velocity on second exertion (both P<0.001). These changes were accompanied by a 21% increase in the energy of the early diastolic coronary backward-traveling expansion, or suction, wave on second exercise (P<0.05), indicating improved microvascular conductance and enhanced left ventricular relaxation. CONCLUSIONS: On repeat exercise in patients with effort angina, synergistic changes in the systemic and coronary circulations combine to improve vascular-ventricular coupling and enhance myocardial perfusion, thereby potentially contributing to the warm-up angina phenomenon.


Assuntos
Adaptação Fisiológica/fisiologia , Angina Pectoris/fisiopatologia , Circulação Coronária/fisiologia , Exercício Físico/fisiologia , Hemodinâmica/fisiologia , Idoso , Aorta/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vasodilatação/fisiologia , Função Ventricular Esquerda/fisiologia , Pressão Ventricular/fisiologia
20.
Circ Res ; 108(10): 1165-9, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21527739

RESUMO

RATIONALE: Isoforms I and II of the glycolytic enzyme hexokinase (HKI and HKII) are known to associate with mitochondria. It is unknown whether mitochondria-bound hexokinase is mandatory for ischemic preconditioning and normal functioning of the intact, beating heart. OBJECTIVE: We hypothesized that reducing mitochondrial hexokinase would abrogate ischemic preconditioning and disrupt myocardial function. METHODS AND RESULTS: Ex vivo perfused HKII(+/-) hearts exhibited increased cell death after ischemia and reperfusion injury compared with wild-type hearts; however, ischemic preconditioning was unaffected. To investigate acute reductions in mitochondrial HKII levels, wild-type hearts were treated with a TAT control peptide or a TAT-HK peptide that contained the binding motif of HKII to mitochondria, thereby disrupting the mitochondrial HKII association. Mitochondrial hexokinase was determined by HKI and HKII immunogold labeling and electron microscopy analysis. Low-dose (200 nmol/L) TAT-HK treatment significantly decreased mitochondrial HKII levels without affecting baseline cardiac function but dramatically increased ischemia-reperfusion injury and prevented the protective effects of ischemic preconditioning. Treatment for 15 minutes with high-dose (10 µmol/L) TAT-HK resulted in acute mitochondrial depolarization, mitochondrial swelling, profound contractile impairment, and severe cardiac disintegration. The detrimental effects of TAT-HK treatment were mimicked by mitochondrial membrane depolarization after mild mitochondrial uncoupling that did not cause direct mitochondrial permeability transition opening. CONCLUSIONS: Acute low-dose dissociation of HKII from mitochondria in heart prevented ischemic preconditioning, whereas high-dose HKII dissociation caused cessation of cardiac contraction and tissue disruption, likely through an acute mitochondrial membrane depolarization mechanism. The results suggest that the association of HKII with mitochondria is essential for the protective effects of ischemic preconditioning and normal cardiac function through maintenance of mitochondrial potential.


Assuntos
Hexoquinase/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Animais , Triagem de Portadores Genéticos , Hexoquinase/deficiência , Hexoquinase/genética , Masculino , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Necrose/enzimologia , Necrose/genética , Necrose/patologia , Ligação Proteica/genética , Ratos , Fatores de Tempo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA