Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2221961120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399376

RESUMO

Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change-associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change.


Assuntos
Aves Canoras , Animais , Mudança Climática , Estações do Ano , América do Norte , Demografia
2.
Ecotoxicology ; 33(2): 131-141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381206

RESUMO

Terrestrial soils in forested landscapes represent some of the largest mercury (Hg) reserves globally. Wildfire can alter the storage and distribution of terrestrial-bound Hg via reemission to the atmosphere or mobilization in watersheds where it may become available for methylation and uptake into food webs. Using data associated with the 2007 Moonlight and Antelope Fires in California, we examined the long-term direct effects of wildfire burn severity on the distribution and magnitude of Hg concentrations in riparian food webs. Additionally, we quantified the cross-ecosystem transfer of Hg from aquatic invertebrate to riparian bird communities; and assessed the influence of biogeochemical, landscape variables, and ecological factors on Hg concentrations in aquatic and terrestrial food webs. Benthic macroinvertebrate methylmercury (MeHg) and riparian bird blood total mercury (THg) concentrations varied by 710- and 760-fold, respectively, and Hg concentrations were highest in predators. We found inconsistent relationships between Hg concentrations across and within taxa and guilds in response to stream chemical parameters and burn severity. Macroinvertebrate scraper MeHg concentrations were influenced by dissolved organic carbon (DOC); however, that relationship was moderated by burn severity (as burn severity increased the effect of DOC declined). Omnivorous bird Hg concentrations declined with increasing burn severity. Overall, taxa more linked to in situ energetic pathways may be more responsive to the biogeochemical processes that influence MeHg cycling. Remarkably, 8 years post-fire, we still observed evidence of burn severity influencing Hg concentrations within riparian food webs, illustrating its overarching role in altering the storage and redistribution of Hg and influencing biogeochemical processes.


Assuntos
Queimaduras , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Incêndios Florestais , Animais , Ecossistema , Rios , Poluentes Químicos da Água/análise , Invertebrados/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Cadeia Alimentar , Aves/metabolismo , Monitoramento Ambiental
3.
Ecol Appl ; 33(4): e2853, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995347

RESUMO

Spatial and temporal variation in fire characteristics-termed pyrodiversity-are increasingly recognized as important factors that structure wildlife communities in fire-prone ecosystems, yet there have been few attempts to incorporate pyrodiversity or post-fire habitat dynamics into predictive models of animal distributions and abundance to support post-fire management. We use the black-backed woodpecker-a species associated with burned forests-as a case study to demonstrate a pathway for incorporating pyrodiversity into wildlife habitat assessments for adaptive management. Employing monitoring data (2009-2019) from post-fire forests in California, we developed three competing occupancy models describing different hypotheses for habitat associations: (1) a static model representing an existing management tool, (2) a temporal model accounting for years since fire, and (3) a temporal-landscape model which additionally incorporates emerging evidence from field studies about the influence of pyrodiversity. Evaluating predictive ability, we found superior support for the temporal-landscape model, which showed a positive relationship between occupancy and pyrodiversity and interactions between habitat associations and years since fire. We incorporated the new temporal-landscape model into an RShiny application to make this decision-support tool accessible to decision-makers.


Assuntos
Ecossistema , Incêndios , Animais , Animais Selvagens , Florestas , Aves
4.
Scand J Med Sci Sports ; 32(4): 710-719, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981575

RESUMO

PURPOSE: Rowing instrumentation systems provide measures of stroke power, stroke rate, and boat velocity during rowing races, but how well these measures predict race performance has not been reported previously. METHODS: Data were collected per stroke from 45 2000-m races using Peach PowerLine and OptimEye S5 GPS units. The boat classes assessed were nine male singles, eight female singles, three male pairs, and six female pairs. Random effects and residuals from general linear mixed modeling of stroke velocity adjusted for stroke power, stroke rate, and mean headwind provided measures interpreted as technical efficiency, race conditions, and stroke-velocity variability. These measures, along with mean race power, mean stroke rate, and mean headwind were then included in multiple linear regressions to predict race velocity from official race times. Effects were assessed for 2 SD changes in predictors and interpreted using interval hypothesis tests. RESULTS: Effects of mean race power, mean stroke rate, and mean headwind on race velocity ranged from small to extremely large and were mostly decisively substantial. Effects of technical efficiency and race conditions ranged from trivial to extremely large but were generally unclear, while stroke-velocity variability had trivial-small and mostly unclear effects. Prediction error was small to moderate and decisively substantial. Men's pairs lacked sufficient data for analysis. CONCLUSION: On-water rowing race performance can be predicted with mean race values of power, stroke rate, and headwind. Estimates from stroke data are potentially useful predictors but require impractical numbers of boats and races to reduce their uncertainty.


Assuntos
Esportes , Esportes Aquáticos , Eficiência , Feminino , Humanos , Masculino , Navios , Água
5.
J Anim Ecol ; 90(5): 1317-1327, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33638165

RESUMO

Pyrodiversity, defined as variation in fire history and characteristics, has been shown to catalyse post-fire biodiversity in a variety of systems. However, the demographic and behavioural mechanisms driving the responses of individual species to pyrodiversity remain largely unexplored. We used a model post-fire specialist, the black-backed woodpecker (Picoides arcticus), to examine the relationship between fire characteristics and juvenile survival while controlling for confounding factors. We radio-tracked fledgling black-backed woodpeckers in burned forests of California and Washington, USA, and derived information on habitat characteristics using ground surveys and satellite data. We used hierarchical Bayesian mixed-effects models to determine the factors that influence both fledgling and annual juvenile survival, and we tested for effects of fledgling age on movement rates. Burn severity strongly affected fledgling survival, with lower survival in patches created by high-severity fire compared to patches burned at medium to low severity or left unburned. Time since leaving the nest was also a strong predictor of fledgling survival, annual juvenile survival and fledgling movement rates. Our results support the role of habitat complementation in generating species-specific benefits from variation in spatial fire characteristics-one axis of pyrodiversity-and highlight the importance of this variation under shifting fire regimes. High-severity fire provides foraging and nesting sites that support the needs of adult black-backed woodpeckers, but fledgling survival is greater in areas burned at lower severity. By linking breeding and foraging habitat with neighbouring areas of reduced predation risk, pyrodiversity may enhance the survival and persistence of animals that thrive in post-fire habitat.


Assuntos
Queimaduras , Incêndios , Animais , Teorema de Bayes , Ecossistema , Florestas , Washington
6.
Glob Chang Biol ; 25(3): 985-996, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506620

RESUMO

Climate variation has been linked to historical and predicted future distributions and dynamics of wildlife populations. However, demographic mechanisms underlying these changes remain poorly understood. Here, we assessed variation and trends in climate (annual snowfall and spring temperature anomalies) and avian demographic variables from mist-netting data (breeding phenology and productivity) at six sites along an elevation gradient spanning the montane zone of Yosemite National Park between 1993 and 2017. We implemented multi-species hierarchical models to relate demographic responses to elevation and climate covariates. Annual variation in climate and avian demographic variables was high. Snowfall declined (10 mm/year at the highest site, 2 mm at the lowest site), while spring temperature increased (0.045°C/year) over the study period. Breeding phenology (mean first capture date of juvenile birds) advanced by 0.2 day/year (5 days); and productivity (probability of capturing a juvenile bird) increased by 0.8%/year. Breeding phenology was 12 days earlier at the lowest compared to highest site, 18 days earlier in years with lowest compared to highest snowfall anomalies, and 6 d earlier in relatively warm springs (after controlling for snowfall effects). Productivity was positively related to elevation. However, elevation-productivity responses varied among species; species with higher productivity at higher compared to lower elevations tended to be species with documented range retractions during the past century. Productivity tended to be negatively related to snowfall and was positively related to spring temperature. Overall, our results suggest that birds have tracked the variable climatic conditions in this system and have benefited from a trend toward warmer, drier springs. However, we caution that continued warming and multi-year drought or extreme weather years may alter these relationships in the future. Multi-species demographic modeling, such as implemented here, can provide an important tool for guiding conservation of species assemblages under global change.


Assuntos
Altitude , Aves/fisiologia , Mudança Climática , Reprodução , Animais , Aves/classificação , Demografia , Modelos Biológicos , Neve , Especificidade da Espécie , Temperatura
7.
J Anim Ecol ; 87(5): 1484-1496, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29782655

RESUMO

Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteristics of fires that promote postfire colonization and persistence and the spatial scales on which they operate. Using a model postfire specialist, the black-backed woodpecker (Picoides arcticus), we examined how colonization and persistence varied across two spatial scales as a function of four characteristics of fire regimes-fire severity, fire size, fire ignition date and number of years since fire. We modelled black-backed woodpecker colonization and persistence using data from 108 recently burned forests in the Sierra Nevada and southern Cascades ecoregions of California, USA, that we monitored for up to 10 years following fire. We employed a novel, spatially hierarchical, dynamic occupancy framework which differentiates colonization and persistence at two spatial scales: across fires and within fires. We found strong effects of fire characteristics on dynamic rates, with colonization and persistence declining across both spatial scales with increasing years since fire. Additionally, at sites within fires, colonization decreased with fire size and increased with fire severity and for fires with later ignition dates. Our results support the notion that different aspects of a species' environment are important for population processes at different spatial scales. As habitat quality is ephemeral for any given postfire area, our results illustrate the importance of time since fire in structuring occupancy at the fire level, with other characteristics of fires playing larger roles in determining abundance within individual fires. Our results contribute to the broader understanding of how variation in fire characteristics influences the colonization and persistence of species using ephemeral habitats, which is necessary for conserving and promoting postfire biodiversity in the context of rapidly shifting fire regimes.


Assuntos
Incêndios , Animais , California , Ecossistema , Florestas , Nevada
8.
Proc Biol Sci ; 283(1840)2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27708152

RESUMO

An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes.


Assuntos
Biodiversidade , Aves/classificação , Incêndios , Florestas , Animais , Teorema de Bayes , California , Mudança Climática
9.
Br J Sports Med ; 49(16): 1077-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24055782

RESUMO

BACKGROUND: Laboratory studies that support the hydration guidelines of leading governing bodies have shown that dehydration to only -2% of body mass can lead to increase in body temperature and heart rate during exercise, and decrease in performance. These studies, however, have been conducted in relatively windless environments (ie, wind speed <12.9 km/h), without participants being blinded to their hydration status. AIM: To investigate the effect of blinded hydration status on cycling time-trial performance in the heat with ecologically valid facing wind speed conditions. METHODS: During three experimental trials, 10 cyclists were dehydrated to -3% body mass by performing 2 h of submaximal exercise (walking and cycling) in the heat, before being reinfused with saline to replace 100%, 33% or 0% of fluid losses, leaving them 0%, -2% or -3% hypohydrated, respectively. Participants then completed a 25 km time trial in the heat (33°C, 40% relative humidity; wind speed 32 km/h) during which their starting hydration status was maintained by infusing saline at a rate equal to their sweat rate. The treatment was participant-blinded and the order was randomised. Completion time, power output, heart rate, rectal temperature and perceptual variables were measured. RESULTS: While rectal temperature was higher beyond 17 km of the time trial in the -3% vs 0% conditions (38.9±0.3°C vs 38.6±0.3°C; p<0.05), no other differences between trials were shown. CONCLUSION: When well-trained cyclists performed a 25 km cycling time trial under ecologically valid conditions and were blinded to their hydration status, performance, physiological and perceptual variables were not different between trials. These data do not support the residing basis behind many of the current hydration guidelines.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Desidratação/fisiopatologia , Exercício Físico/fisiologia , Hidratação/métodos , Guias de Prática Clínica como Assunto , Adulto , Temperatura Corporal/fisiologia , Cognição/fisiologia , Eletrólitos/administração & dosagem , Temperatura Alta , Humanos , Masculino , Resistência Física/fisiologia
10.
Mol Ecol ; 23(23): 5726-39, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25346105

RESUMO

Neotropic migratory birds are declining across the Western Hemisphere, but conservation efforts have been hampered by the inability to assess where migrants are most limited-the breeding grounds, migratory stopover sites or wintering areas. A major challenge has been the lack of an efficient, reliable and broadly applicable method for measuring the strength of migratory connections between populations across the annual cycle. Here, we show how high-resolution genetic markers can be used to identify genetically distinct groups of a migratory bird, the Wilson's warbler (Cardellina pusilla), at fine enough spatial scales to facilitate assessing regional drivers of demographic trends. By screening 1626 samples using 96 highly divergent single nucleotide polymorphisms selected from a large pool of candidates (~450 000), we identify novel region-specific migratory routes and timetables of migration along the Pacific Flyway. Our results illustrate that high-resolution genetic markers are more reliable, precise and amenable to high throughput screening than previously described intrinsic marking techniques, making them broadly applicable to large-scale monitoring and conservation of migratory organisms.


Assuntos
Migração Animal , Marcadores Genéticos , Genética Populacional , Aves Canoras/genética , Animais , Conservação dos Recursos Naturais/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
Mol Ecol ; 22(16): 4163-4176, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23906339

RESUMO

Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable-isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model-based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi-allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.


Assuntos
Migração Animal/fisiologia , Genética Populacional/métodos , Modelos Estatísticos , Aves Canoras/genética , Animais , Teorema de Bayes , Cruzamento , California , Isótopos , Repetições de Microssatélites/genética , Noroeste dos Estados Unidos , Aves Canoras/classificação , Aves Canoras/fisiologia
12.
PLoS One ; 18(3): e0281687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36877704

RESUMO

In conifer forests of western North America, wildlife populations can change rapidly in the decade following wildfire as trees die and animals respond to concomitant resource pulses that occur across multiple trophic levels. In particular, black-backed woodpeckers (Picoides arcticus) show predictable temporal increases then declines following fire; this trajectory is widely believed to be a response to the woodpeckers' main prey, woodboring beetle larvae of the families Buprestidae and Cerambycidae, but we lack understanding of how abundances of these predators and prey may be associated in time or space. Here, we pair woodpecker surveys over 10 years with surveys of woodboring beetle sign and activity, collected at 128 survey plots across 22 recent fires, to ask whether accumulated beetle sign indicates current or past black-backed woodpecker occurrence, and whether that relationship is mediated by the number of years since fire. We test this relationship using an integrative multi-trophic occupancy model. Our results demonstrate that woodboring beetle sign is a positive indicator of woodpecker presence 1-3 years following fire, an uninformative indicator from 4-6 years after fire, and a negative indicator beginning 7 years following fire. Woodboring beetle activity, itself, is temporally variable and dependent on tree species composition, with beetle sign generally accumulating over time, particularly in stands with diverse tree communities, but decreasing over time in Pinus-dominated stands where faster bark decay rates lead to brief pulses of beetle activity followed by rapid degradation of tree substrate and accumulated beetle sign. Altogether, the strong connections of woodpecker occurrence to beetle activity support prior hypotheses of how multi-trophic interactions govern rapid temporal dynamics of primary and secondary consumers in burned forests. While our results indicate that beetle sign is, at best, a rapidly shifting and potentially misleading measure of woodpecker occurrence, the better we understand the interacting mechanisms underlying temporally dynamic systems, the more successfully we will be able to predict the outcomes of management actions.


Assuntos
Besouros , Incêndios , Incêndios Florestais , Animais , Animais Selvagens , Aves , Árvores
13.
J Sports Sci ; 30(2): 155-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22132792

RESUMO

The purpose of this study was to compare the effects of pre-exercise ice slurry ingestion and cold water immersion on submaximal running time in the heat. On three separate occasions, eight males ran to exhaustion at their first ventilatory threshold in the heat (34.0 ± 0.1 ° C, 52 ± 3% relative humidity) following one of three 30 min pre-exercise manoeuvres: (1) ice slurry ingestion; (2) cold water immersion; or (3) warm fluid ingestion (control). Running time was longer following cold water immersion (56.8 ± 5.6 min; P = 0.008) and ice slurry ingestion (52.7 ± 8.4 min; P = 0.005) compared with control (46.7 ± 7.2 min), but not significantly different between cold water immersion and ice slurry ingestion (P = 0.335). During exercise, rectal temperature was lower with cold water immersion from 15 and 20 min into exercise compared with control and ice slurry ingestion, respectively, and remained lower until 40 min (P = 0.001). At exhaustion rectal temperature was significantly higher following ice slurry ingestion (39.76 ± 0.36 ° C) compared with control (39.48 ± 0.36 ° C; P = 0.042) and tended to be higher than cold water immersion (39.48 ± 0.34 ° C; P = 0.065). As run times were similar between conditions, ice slurry ingestion may be a comparable form of pre-cooling to cold water immersion.


Assuntos
Temperatura Corporal/fisiologia , Temperatura Baixa , Ingestão de Líquidos , Temperatura Alta , Imersão , Resistência Física/fisiologia , Corrida/fisiologia , Adulto , Desempenho Atlético , Banhos , Água Potável , Meio Ambiente , Fadiga , Humanos , Umidade , Gelo , Masculino , Água , Adulto Jovem
14.
J Zoo Wildl Med ; 43(2): 421-4, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22779254

RESUMO

The black-backed woodpecker (Picoides arcticus) is a species of management concern in California. As part of a study of black-backed woodpecker home range size and foraging ecology, nine birds in Lassen National Forest (Shasta and Lassen Counties, California) were radio-tracked during the 2011 breeding season. One of the marked birds was found dead after being tracked for a 10-wk period in which it successfully nested. A postmortem examination of the dead bird revealed that it was emaciated and autolyzed, with the presumptive cause being numerous spiruroid nematodes of the genus Procyrnea in the gizzard. This first observation of Procyrnea nematodes in a black-backed woodpecker is notable because the Procyrnea infection was considered lethal and because Procyrnea has been implicated in substantial die-offs in other bird species, including woodpeckers.


Assuntos
Doenças das Aves/parasitologia , Nematoides/classificação , Infecções por Nematoides/veterinária , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/patologia , Aves , California/epidemiologia , Evolução Fatal , Gastroenteropatias/epidemiologia , Gastroenteropatias/parasitologia , Gastroenteropatias/veterinária , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/patologia
15.
Nat Ecol Evol ; 6(12): 1860-1870, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302998

RESUMO

Quantifying environment-morphology relationships is important not only for understanding the fundamental processes driving phenotypic diversity within and among species but also for predicting how species will respond to ongoing global change. Despite a clear set of expectations motivated by ecological theory, broad evidence in support of generalizable effects of abiotic conditions on spatial and temporal intraspecific morphological variation has been limited. Using standardized data from >250,000 captures of 105 landbird species, we assessed intraspecific shifts in the morphology of adult male birds since 1989 while simultaneously measuring spatial morphological gradients across the North American continent. We found strong spatial and temporal trends in average body size, with warmer temperatures associated with smaller body sizes both at more equatorial latitudes and in more recent years. The magnitude of these thermal effects varied both across and within species, with results suggesting it is the warmest, rather than the coldest, temperatures that drive both spatial and temporal trends. Stronger responses to spatial-rather than temporal-variation in temperature suggest that morphological change may not be keeping up with the pace of climate change. Additionally, as elevation increases, we found that body size declines as relative wing length increases, probably due to the benefits that longer wings confer for flight in thin air environments. Our results provide support for both existing and new large-scale ecomorphological 'rules' and highlight how the response of functional trade-offs to abiotic variation drives morphological change.


Assuntos
Aves , Mudança Climática , Animais , Masculino , Aves/fisiologia , Temperatura , Tamanho Corporal , América do Norte
16.
Ecol Evol ; 12(6): e8934, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784033

RESUMO

The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS-tagging data, climate data, remote-sensed vegetation data, and bird-banding data to better understand the dynamics of black-headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992-2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age-specific capture data and climate covariates, and survival rates informed by adult capture-mark-recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long-term population trend. We found only weak support for most climate-demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species.

17.
Eur J Appl Physiol ; 111(10): 2517-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21360201

RESUMO

The purpose of this study was to determine whether ingestion of a small bolus of ice slurry (1.25 g kg(-1)) could attenuate the reduction in maximal voluntary isometric contraction (MVC) torque output during a 2-min sustained task following exercise-induced hyperthermia. On two separate occasions, 10 males (age: 24 ± 3 years, .VO(2peak): 49.8 ± 4.7 ml kg(-1) min(-1)) ran to exhaustion at their first ventilatory threshold in a hot environment (34.1 ± 0.1°C, 49.5 ± 3.6% RH). Prior to and after exercise, subjects performed a 2-min sustained MVC of the right elbow flexors in a thermoneutral environment (24.6 ± 0.8°C, 37.2 ± 4.5% RH). The post exercise MVC was performed immediately following the ingestion of either 1.25 g kg(-1) of ice slurry (-1°C; ICE) or warm fluid (40°C; CON), in a counterbalanced and randomised order. Run time to exhaustion (42.4 ± 9.5 vs. 41.7 ± 8.7 min; p = 0.530), and rectal (39.08 ± 0.30 vs. 39.08 ± 0.30°C; p = 0.934) and skin temperatures (35.26 ± 0.65 vs. 35.28 ± 0.67°C; p = 0.922) and heart rate (189 ± 5 vs. 189 ± 6 beats min(-1); p = 0.830) at the end of the run were similar between trials. Torque output during the post-exercise 2-min sustained MVC was significantly higher (p = 0.001) following ICE (30.75 ± 16.40 Nm) compared with CON (28.69 ± 14.88 Nm). These results suggest that ice slurry ingestion attenuated the effects of exercise-induced hyperthermia on MVC, possibly via internal thermoreceptive and/or temperature-related sensory mechanisms.


Assuntos
Bebidas , Exercício Físico/fisiologia , Febre/etiologia , Gelo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Regulação da Temperatura Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Febre/fisiopatologia , Febre/prevenção & controle , Humanos , Masculino , Esforço Físico/fisiologia , Torque , Equilíbrio Hidroeletrolítico/fisiologia , Adulto Jovem
18.
Front Physiol ; 12: 758015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867462

RESUMO

Purpose: Instrumentation systems are increasingly used in rowing to measure training intensity and performance but have not been validated for measures of power. In this study, the concurrent validity of Peach PowerLine (six units), Nielsen-Kellerman EmPower (five units), Weba OarPowerMeter (three units), Concept2 model D ergometer (one unit), and a custom-built reference instrumentation system (Reference System; one unit) were investigated. Methods: Eight female and seven male rowers [age, 21 ± 2.5 years; rowing experience, 7.1 ± 2.6 years, mean ± standard deviation (SD)] performed a 30-s maximal test and a 7 × 4-min incremental test once per week for 5 weeks. Power per stroke was extracted concurrently from the Reference System (via chain force and velocity), the Concept2 itself, Weba (oar shaft-based), and either Peach or EmPower (oarlock-based). Differences from the Reference System in the mean (representing potential error) and the stroke-to-stroke variability (represented by its SD) of power per stroke for each stage and device, and between-unit differences, were estimated using general linear mixed modeling and interpreted using rejection of non-substantial and substantial hypotheses. Results: Potential error in mean power was decisively substantial for all devices (Concept2, -11 to -15%; Peach, -7.9 to -17%; EmPower, -32 to -48%; and Weba, -7.9 to -16%). Between-unit differences (as SD) in mean power lacked statistical precision but were substantial and consistent across stages (Peach, ∼5%; EmPower, ∼7%; and Weba, ∼2%). Most differences from the Reference System in stroke-to-stroke variability of power were possibly or likely trivial or small for Peach (-3.0 to -16%), and likely or decisively substantial for EmPower (9.7-57%), and mostly decisively substantial for Weba (61-139%) and the Concept2 (-28 to 177%). Conclusion: Potential negative error in mean power was evident for all devices and units, particularly EmPower. Stroke-to-stroke variation in power showed a lack of measurement sensitivity (apparent smoothing) that was minor for Peach but larger for the Concept2, whereas EmPower and Weba added random error. Peach is therefore recommended for measurement of mean and stroke power.

19.
PLoS One ; 16(8): e0249122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415922

RESUMO

PURPOSE: Boat acceleration profiles provide a valuable feedback tool by reflecting both rower technique and force application. Relationships between measures of boat acceleration and velocity to inform interpretation of boat acceleration profiles in rowing were investigated here. METHODS: Thirteen male singles, nine female singles, eight male pairs, and seven female pairs participated (national and international level, age 18-27 y). Data from each stroke for 74 2000-m races were collected using Peach PowerLine and OptimEye S5 GPS units. General linear mixed modelling established modifying effects on velocity of two within-crew SD of boat acceleration variables for each boat class, without and with adjustment for stroke rate and power, to identify potential performance-enhancement strategies for a given stroke rate and power. Measures of acceleration magnitude at six peaks or dips, and six measures of the rate of change (jerk) between these peaks and dips were analyzed. Results were interpreted using rejection of non-substantial and substantial hypotheses with a smallest substantial change in velocity of 0.3%. RESULTS: Several boat acceleration measures had decisively substantial effects (-2.4-2.5%) before adjustment for stroke rate and power. Most effect magnitudes reduced after adjustment for stroke rate and power, although maximum negative drive acceleration, peak drive acceleration, jerk during the mid-drive phase, and jerk in the late recovery remained decisively substantial (-1.8-1.9%) in some boat classes. CONCLUSION: Greater absolute values of maximum negative drive acceleration and jerk in the late recovery are related to improved performance, likely reflecting delayed rower centre-of-mass negative acceleration in preparation for the catch. Greater absolute values of peak drive acceleration, first peak acceleration, and jerk in the early and mid-drive are also associated with improved performance, likely reflecting propulsive force during the drive. These proposed mechanisms provide potential strategies for performance enhancement additional to increases in stroke rate and power output.


Assuntos
Desempenho Atlético/fisiologia , Esportes Aquáticos/fisiologia , Aceleração , Adolescente , Adulto , Feminino , Humanos , Masculino , Força Muscular/fisiologia , Adulto Jovem
20.
Front Sports Act Living ; 3: 681766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969301

RESUMO

[This corrects the article DOI: 10.3389/fspor.2020.589013.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA