Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(2): e1007551, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30730983

RESUMO

By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phosphatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)P). Here we show that its activity is essential during early phagosome maturation in Dictyostelium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and proteases, dramatically reducing the ability of cells to acidify newly formed phagosomes and digest their contents. Consequently, PIKfyve- cells were unable to generate an effective antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production plays a crucial and general role in ensuring early phagosomal maturation, protecting host cells from diverse pathogenic microbes.


Assuntos
Dictyostelium/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Adenosina Trifosfatases , Animais , Linhagem Celular , Dictyostelium/patogenicidade , Humanos , Hidrolases/metabolismo , Legionella pneumophila/patogenicidade , Legionelose/metabolismo , Macrófagos , Fagocitose , Fagossomos , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositóis , Transporte Proteico , Infecções por Protozoários/metabolismo
2.
Toxicol Res (Camb) ; 10(2): 203-213, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33884171

RESUMO

The aspartic proteases plasmepsin IX/X are important antimalarial drug targets due to their specificity to the malaria parasite and their vital role as mediators of disease progression. Focusing on parasite-specific targets where no human homologue exists reduces the possibility of on-target drug toxicity. However, there is a risk of toxicity driven by inadequate selectivity for plasmepsins IX/X in Plasmodium over related mammalian aspartic proteases. Of these, CatD/E may be of most toxicological relevance as CatD is a ubiquitous lysosomal enzyme present in most cell types and CatE is found in the gut and in erythrocytes, the clinically significant site of malarial infection. Based on mammalian aspartic protease physiology and adverse drug reactions (ADRs) to FDA-approved human immunodeficiency virus (HIV) aspartic protease inhibitors, we predicted several potential toxicities including ß-cell and congenital abnormalities, hypotension, hypopigmentation, hyperlipidaemia, increased infection risk and respiratory, renal, gastrointestinal, dermatological, and other epithelial tissue toxicities. These ADRs to the HIV treatments are likely to be a result of host aspartic protease inhibition due a lack of specificity for the HIV protease; plasmepsins are much more closely related to human CatD than to HIV proteinase. Plasmepsin IX/X inhibition presents an opportunity to specifically target Plasmodium as an effective antimalarial treatment, providing adequate selectivity can be obtained. Potential plasmepsin IX/X inhibitors should be assayed for inhibitory activity against the main human aspartic proteases and particularly CatD/E. An investigative rodent study conducted early in drug discovery would serve as an initial risk assessment of the potential hazards identified.

3.
Toxicol Sci ; 183(1): 105-116, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34117767

RESUMO

GS-9695 and GS-9822 are next-generation noncatalytic site integrase inhibitors (NCINIs) with significantly improved potency against human immunodeficiency virus compared with previous drugs such as BI-224436. Development stopped due to vacuolation of the bladder urothelium seen in cynomolgus monkey but not in rat; this lesion was absent in equivalent preclinical studies with BI-224436 (tested in dog and rat). Lesions were unlikely to be attributable to target because NCINIs specifically target viral integrase protein and no mammalian homologue is known. Secondary pharmacology studies, mitochondrial toxicity studies, immunophenotyping, and analysis of proteins implicated in cell-cell interactions and/or bladder integrity (E-cadherin, pan-cytokeratin, uroplakins) failed to offer any plausible explanation for the species specificity of the lesion. Because it was characterized by inflammation and disruption of urothelial morphology, we investigated physicochemical changes in the bladder of cynomolgus monkey (urinary pH 5.5-7.4) that might not occur in the bladder of rats (urinary pH 7.3-8.5). In measurements of surface activity, GS-9822 showed an unusual transition from a monolayer to a bilayer at the air/water interface with decreasing pH, attributed to the strong association between drug molecules in adjacent bilayer leaflets and expected to be highly disruptive to the urothelium. Structural analysis of GS-9822 and GS-9695 showed zwitterionic characteristics over the range of pH expected in cynomolgus monkey but not rat urine. This exotic surface behavior is unlikely with BI-224436 since it would transition from neutral to cationic (never zwitterionic) with decreasing pH. These data provide useful insights to guide discovery and development of NCINIs, related compounds, and zwitterions.


Assuntos
Inibidores de Integrase de HIV , Urotélio , Animais , Cães , Concentração de Íons de Hidrogênio , Macaca fascicularis , Ratos , Especificidade da Espécie
4.
Toxicol Res (Camb) ; 9(5): 676-682, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33178428

RESUMO

Here we look at popular trends and concepts in toxicology over the decade 2009-2019. The top 10 concepts included methodological approaches such as zebrafish and genomics as well as broader concepts such as personalized medicine and adverse outcome pathways. The total number and rank order for each of the top 10 were tracked year by year via PubMed with >9500 papers contributing to the analysis. The data revealed a slow upward trend in the number of papers across all the concepts from 260 in 2009 to >1700 in 2019. Zebrafish, genomics and personalized medicine remained in the top four slots since 2009 with zebrafish dominating the rankings over the entire decade. Genomics was a strong second until 2013 when it was displaced first by the microbiome in 2014 and secondly by personalized medicine in 2015. Other notable trends were the ascendancy of the microbiome and adverse outcome pathways and the descendancy of hormesis and the 3Rs (replacement, reduction and refinement of animals in testing). The observation that the top four slots have been static over the past 4 years suggests that new ideas are introduced and increase in popularity until they find their place in scientific culture. This may suggest that relatively new concepts such as artificial intelligence and microphysiological systems have yet to find their steady state in the rankings. Similarly, as a relatively new player in toxicology, the full impact of the human microbiome on drug efficacy and safety remains to be seen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA