Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739779

RESUMO

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Assuntos
Cobre , Ouro , Nanopartículas Metálicas , Titânio , Nanopartículas Metálicas/química , Titânio/química , Ouro/química , Cobre/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/economia , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Coloide de Ouro/química , SARS-CoV-2/isolamento & purificação
2.
Small ; 16(13): e1905959, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130783

RESUMO

Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+ -containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze-thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze-thaw cycles, 1000 freeze-thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10-3 and 200 × 10-3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long-term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.


Assuntos
Criopreservação , DNA , Nanoestruturas , Criopreservação/métodos , Crioprotetores/farmacologia , DNA/química , DNA/efeitos dos fármacos , Dano ao DNA , Congelamento , Glicerol/farmacologia , Nanoestruturas/química , Trealose/farmacologia
3.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38260353

RESUMO

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold NPs-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic nanoparticles (NPs) based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. To the best of our knowledge, our study represents the 1st application of laser-ablation-fabricated nanoparticles (TiN) in the LFA and dot-blot biotesting. Since the main cost of the Au NPs in commercial testing kits is in the colloidal synthesis, our development with TiN is very exciting, offering potentially very inexpensive plasmonic nanomaterials for various bio-testing applications. Moreover, our machine learning study showed that the bio-detection with TiN is more accurate than that with Au.

4.
Adv Mater ; 33(37): e2101986, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337805

RESUMO

The design of dynamic, reconfigurable devices is crucial for the bottom-up construction of artificial biological systems. DNA can be used as an engineering material for the de-novo design of such dynamic devices. A self-assembled DNA origami switch is presented that uses the transition from double- to single-stranded DNA and vice versa to create and annihilate an entropic force that drives a reversible conformational change inside the switch. It is distinctively demonstrated that a DNA single-strand that is extended with 0.34 nm per nucleotide - the extension this very strand has in the double-stranded configuration - exerts a contractive force on its ends leading to large-scale motion. The operation of this type of switch is demonstrated via transmission electron microscopy, DNA-PAINT super-resolution microscopy and darkfield microscopy. The work illustrates the intricate and sometimes counter-intuitive forces that act in nanoscale physical systems that operate in fluids.


Assuntos
DNA/química , Nanoestruturas/química , DNA de Cadeia Simples/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA