Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504114

RESUMO

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Genoma , Células K562 , RNA Guia de Sistemas CRISPR-Cas
2.
Nat Methods ; 18(8): 965-974, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341582

RESUMO

CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. The fusion of chromatin-modifying domains to nuclease-deactivated Cas9 (dCas9) has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to the widespread adoption of these tools for in vivo studies. Here, we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting the guide RNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Epigenoma , Edição de Genes/métodos , Regulação da Expressão Gênica , Animais , Encéfalo/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Linfócitos T/metabolismo
3.
Nucleic Acids Res ; 48(20): 11380-11393, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33068438

RESUMO

Advancing the molecular knowledge surrounding fertility and inheritance has become critical given the halving of sperm counts in the last 40 years, and the rise in complex disease which cannot be explained by genetics alone. The connection between both these trends may lie in alterations to the sperm epigenome and occur through environmental exposures. Changes to the sperm epigenome are also associated with health risks across generations such as metabolic disorders and cancer. Thus, it is imperative to identify the epigenetic modifications that escape reprogramming during spermatogenesis and embryogenesis. Here, we aimed to identify the chromatin signature(s) involved in transgenerational phenotypes in our genetic mouse model of epigenetic inheritance that overexpresses the histone demethylase KDM1A in their germ cells. We used sperm-specific chromatin immunoprecipitation followed by in depth sequencing (ChIP-seq), and computational analysis to identify whether differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3), and histone H3 lysine 27 trimethylation (H3K27me3) serve as mechanisms for transgenerational epigenetic inheritance through the paternal germline. Our analysis on the sperm of KDM1A transgenic males revealed specific changes in H3K4me3 enrichment that predominantly occurred independently from bivalent H3K4me3/H3K27me3 regions. Many regions with altered H3K4me3 enrichment in sperm were identified on the paternal allele of the pre-implantation embryo. These findings suggest that sperm H3K4me3 functions in the transmission of non-genetic phenotypes transgenerationally.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Animais , Reprogramação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Embrião de Mamíferos/metabolismo , Ontologia Genética , Loci Gênicos , Histona Desmetilases/genética , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , Espermatócitos/metabolismo
4.
Biol Reprod ; 100(6): 1661-1672, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951591

RESUMO

Environmental exposures can alter the long-term health and development of offspring. How this environmental information is transmitted via the germline remains unknown, but it is thought to involve epigenetic inheritance. We recently determined that genetic disruption of histone H3 di-methylation at lysine 4 (H3K4me2) in sperm alters gene expression in the embryo and negatively impacts development across generations. However, little is known regarding when in spermatogenesis H3K4me2 methylation is established, and whether specific regions bearing H3K4me2 resist the epigenome remodeling that occurs throughout spermatogenesis. Our objective was to determine what genomic regions bearing histone H3K4me2 in spermatogonia are also present in sperm. Methods: Using transgenic mice expressing Oct4-GFP, we isolated an enriched spermatogonia population and performed ChIP-seq for H3K4me2, followed by downstream bioinformatics analysis. Using our epigenomic data and existing datasets, we compared the genomic distribution of H3K4me2 between spermatogonia and sperm. We also assessed the expression level of genes enriched in H3K4me2 in spermatogenic cell types and at specific embryonic developmental time-points. We observed that many regions of the sperm epigenome bearing H3K4me2 are already present in spermatogonia, suggesting an early establishment of this histone mark in spermatogenesis. Subsets of genes with a high enrichment in H3K4me2 in sperm are strongly expressed in spermatogenesis and others are associated with high gene expression during embryo development. These findings suggest that if epimutations in H3K4me2 are induced in spermatogonia they have the possibility to persist throughout spermatogenesis and may influence fertility by altering gene expression in spermatogenesis and in the embryo.


Assuntos
Epigênese Genética , Genômica , Histonas/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Animais , Masculino , Camundongos
5.
Nucleic Acids Res ; 44(W1): W135-41, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27105848

RESUMO

MicroRNAs (miRNAs) can regulate nearly all biological processes and their dysregulation is implicated in various complex diseases and pathological conditions. Recent years have seen a growing number of functional studies of miRNAs using high-throughput experimental technologies, which have produced a large amount of high-quality data regarding miRNA target genes and their interactions with small molecules, long non-coding RNAs, epigenetic modifiers, disease associations, etc These rich sets of information have enabled the creation of comprehensive networks linking miRNAs with various biologically important entities to shed light on their collective functions and regulatory mechanisms. Here, we introduce miRNet, an easy-to-use web-based tool that offers statistical, visual and network-based approaches to help researchers understand miRNAs functions and regulatory mechanisms. The key features of miRNet include: (i) a comprehensive knowledge base integrating high-quality miRNA-target interaction data from 11 databases; (ii) support for differential expression analysis of data from microarray, RNA-seq and quantitative PCR; (iii) implementation of a flexible interface for data filtering, refinement and customization during network creation; (iv) a powerful fully featured network visualization system coupled with enrichment analysis. miRNet offers a comprehensive tool suite to enable statistical analysis and functional interpretation of various data generated from current miRNA studies. miRNet is freely available at http://www.mirnet.ca.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Software , Animais , Sítios de Ligação , Gráficos por Computador , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Internet , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
6.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205457

RESUMO

The clinical response to adoptive T cell therapies is strongly associated with transcriptional and epigenetic state. Thus, technologies to discover regulators of T cell gene networks and their corresponding phenotypes have great potential to improve the efficacy of T cell therapies. We developed pooled CRISPR screening approaches with compact epigenome editors to systematically profile the effects of activation and repression of 120 transcription factors and epigenetic modifiers on human CD8+ T cell state. These screens nominated known and novel regulators of T cell phenotypes with BATF3 emerging as a high confidence gene in both screens. We found that BATF3 overexpression promoted specific features of memory T cells such as increased IL7R expression and glycolytic capacity, while attenuating gene programs associated with cytotoxicity, regulatory T cell function, and T cell exhaustion. In the context of chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. CAR T cells overexpressing BATF3 significantly outperformed control CAR T cells in both in vitro and in vivo tumor models. Moreover, we found that BATF3 programmed a transcriptional profile that correlated with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens with and without BATF3 overexpression to define co-factors and downstream factors of BATF3, as well as other therapeutic targets. These screens pointed to a model where BATF3 interacts with JUNB and IRF4 to regulate gene expression and illuminated several other novel targets for further investigation.

7.
Nat Genet ; 55(12): 2211-2223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945901

RESUMO

Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+ T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Linfócitos T CD8-Positivos , Epigênese Genética
8.
Science ; 350(6261): aab2006, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26449473

RESUMO

A father's lifetime experiences can be transmitted to his offspring to affect health and development. However, the mechanisms underlying paternal epigenetic transmission are unclear. Unlike in somatic cells, there are few nucleosomes in sperm, and their function in epigenetic inheritance is unknown. We generated transgenic mice in which overexpression of the histone H3 lysine 4 (H3K4) demethylase KDM1A (also known as LSD1) during spermatogenesis reduced H3K4 dimethylation in sperm. KDM1A overexpression in one generation severely impaired development and survivability of offspring. These defects persisted transgenerationally in the absence of KDM1A germline expression and were associated with altered RNA profiles in sperm and offspring. We show that epigenetic inheritance of aberrant development can be initiated by histone demethylase activity in developing sperm, without changes to DNA methylation at CpG-rich regions.


Assuntos
Anormalidades Congênitas/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases/metabolismo , Histonas/metabolismo , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Animais , Ilhas de CpG , Metilação de DNA , Feminino , Histona Desmetilases/genética , Masculino , Metilação , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Espermatozoides/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA