Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38096951

RESUMO

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Assuntos
Amiloidose , Apolipoproteínas A , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Pessoa de Meia-Idade , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/genética , Nefrite Intersticial/complicações , Mutação , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações
2.
Kidney Int ; 101(2): 349-359, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34560138

RESUMO

Amyloid A amyloidosis is a serious clinical condition resulting from the systemic deposition of amyloid A originating from serum amyloid A proteins with the kidneys being the most commonly and earliest affected organ. Previously described amyloid A amyloidosis is linked to increased production and deposition of serum amyloid A proteins secondary to inflammatory conditions arising from infectious, metabolic, or genetic causes. Here we describe a family with primary amyloid A amyloidosis due to a chr11:18287683 T>C (human genome version19) mutation in the SAA1 promoter linked to the amyloidogenic SAA1.1 haplotype. This condition leads to a doubling of the basal SAA1 promoter activity and sustained elevation of serum amyloid A levels that segregated in an autosomal dominant pattern in 12 genetically affected and in none of six genetically unaffected relatives, yielding a statistically significant logarithm of odds (LOD) score over 5. Affected individuals developed proteinuria, chronic kidney disease and systemic deposition of amyloid composed specifically of the SAA1.1 isoform. Tocilizumab (a monoclonal antibody against the interleukin-6 receptor) had a beneficial effect when prescribed early in the disease course. Idiopathic forms represent a significant and increasing proportion (15-20%) of all diagnosed cases of amyloid A amyloidosis. Thus, genetic screening of the SAA1 promoter should be pursued in individuals with amyloid A amyloidosis and no systemic inflammation, especially if there is a positive family history.


Assuntos
Amiloidose , Amiloidose/complicações , Humanos , Mutação , Regiões Promotoras Genéticas , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
3.
Am J Med Genet A ; 188(7): 1979-1989, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338595

RESUMO

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene encoding alpha-galactosidase A (AGAL). The impact of X-chromosome inactivation (XCI) on the phenotype of female FD patients remains unclear. In this study we aimed to determine pitfalls of XCI testing in a cohort of 35 female FD patients. XCI was assessed by two methylation-based and two allele-specific expression assays. The results correlated, although some variance among the four assays was observed. GLA transcript analyses identified crossing-over in three patients and detected mRNA instability in three out of four analyzed null alleles. AGAL activity correlated with XCI pattern and was not influenced by the mutation type or by reduced mRNA stability. Therefore, AGAL activity may help to detect crossing-over in patients with unstable GLA alleles. Tissue-specific XCI patterns in six patients, and age-related changes in two patients were observed. To avoid misinterpretation of XCI results in female FD patients we show that (i) a combination of several XCI assays generates more reliable results and minimizes possible biases; (ii) correlating XCI to GLA expression and AGAL activity facilitates identification of cross-over events; (iii) age- and tissue-related XCI specificities of XCI patterning should be considered.


Assuntos
Doença de Fabry , Cromossomos , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Feminino , Humanos , Mutação , Fenótipo , Inativação do Cromossomo X/genética , alfa-Galactosidase/genética
4.
J Inherit Metab Dis ; 45(6): 1175-1190, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083604

RESUMO

Acid ceramidase catalyzes the degradation of ceramide into sphingosine and a free fatty acid. Acid ceramidase deficiency results in lipid accumulation in many tissues and leads to the development of Farber disease (FD). Typical manifestations of classical FD include formation of subcutaneous nodules and joint contractures as well as the development of a hoarse voice. Healthy skin depends on a unique lipid profile to form a barrier that confers protection from pathogens, prevents excessive water loss, and mediates cell-cell communication. Ceramides comprise ~50% of total epidermis lipids and regulate cutaneous homeostasis and inflammation. Abnormal skin development including visual skin lesions has been reported in FD patients, but a detailed study of FD skin has not been performed. We conducted a pathophysiological study of the skin in our mouse model of FD. We observed altered lipid composition in FD skin dominated by accumulation of all studied ceramide species and buildup of abnormal storage structures affecting mainly the dermis. A deficiency of acid ceramidase activity also led to the activation of inflammatory IL-6/JAK/signal transducer and activator of transcription 3 and noncanonical NF-κB signaling pathways. Last, we report reduced proliferation of FD mouse fibroblasts and adipose-derived stem/stromal cells (ASC) along with impaired differentiation of ASCs into mature adipocytes.


Assuntos
Lipogranulomatose de Farber , Camundongos , Animais , Ceramidase Ácida/genética , Adipogenia , Ceramidas/metabolismo , Modelos Animais de Doenças , Inflamação
5.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199199

RESUMO

Natural products have always enjoyed great popularity among consumers. Wild tea is an interesting alternative to tea from intensive plantations. The term "wild tea" is applied to many different varieties of tea, the most desirable and valued of which are native or indigenous tea plants. Special pro-health properties of wild tea are attributed to the natural conditions in which it grows. However, there are no complex studies that describe quality and health indicators of wild tea. The aim of this research was to evaluate the quality of wild and cultivated green tea from different regions of China: Wuzhishan, Baisha, Kunlushan, and Pu'Er. The assessment was carried out by verifying the concentration of selected chemical components in tea and relating it to the health risks they may pose, as well as to the nutritional requirements of adults. Wild tea was characterized by higher micronutrient concentration. The analyzed teas can constitute a valuable source of Mn in the diet. A higher concentration of nitrates and oxalates in cultivated tea can be associated with fertilizer use. The analyzed cultivated tea was a better source of antioxidants with a higher concentration of caffeine. There were no indications of health risks for wild or cultivated teas.


Assuntos
Antioxidantes/análise , Fertilizantes/análise , Oxalatos/análise , Extratos Vegetais/análise , Folhas de Planta/química , Polifenóis/química , Chá/química , China , Elementos Químicos , Humanos , Nitratos/análise , Controle de Qualidade
6.
Kidney Int ; 98(6): 1589-1604, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32750457

RESUMO

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.


Assuntos
Anemia , Doenças Renais Policísticas , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Mutação , Doenças Renais Policísticas/genética , Renina/genética , Adulto Jovem
7.
Am J Pathol ; 189(2): 320-338, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472209

RESUMO

Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.


Assuntos
Ceramidase Ácida/genética , Lipogranulomatose de Farber , Mutação de Sentido Incorreto , Nervo Óptico , Retina , Transtornos da Visão , Ceramidase Ácida/metabolismo , Substituição de Aminoácidos , Animais , Ceramidas/genética , Ceramidas/metabolismo , Modelos Animais de Doenças , Lipogranulomatose de Farber/enzimologia , Lipogranulomatose de Farber/genética , Lipogranulomatose de Farber/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Mutantes , Nervo Óptico/enzimologia , Nervo Óptico/patologia , Retina/enzimologia , Retina/patologia , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Transtornos da Visão/enzimologia , Transtornos da Visão/genética , Transtornos da Visão/patologia
8.
Am J Med Genet A ; 182(1): 219-223, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31729179

RESUMO

Cullin 4B (CUL4B), lysosomal-associated membrane protein Type 2 (LAMP2), ATP1B4, TMEM255A, and ZBTB33 are neighboring genes on Xq24. Mutations in CUL4B result in Cabezas syndrome (CS). Male CS patients present with dysmorphic, neuropsychiatric, genitourinary, and endocrine abnormalities. Heterozygous CS females are clinically asymptomatic. LAMP2 mutations cause Danon disease (DD). Cardiomyopathy is a dominant feature of DD present in both males and heterozygous females. No monogenic phenotypes have been associated with mutations in ATP1B4, TMEM255A, and ZBTB33 genes. To facilitate diagnostics and counseling in CS and DD families, we present a female DD patient with a de novo Alu-mediated Xq24 rearrangement causing a deletion encompassing CUL4B, LAMP2, and also the other three neighboring genes. Typical to females heterozygous for CUL4B mutations, the patient was CS asymptomatic, however, presented with extremely skewed X-chromosome inactivation (XCI) ratios in peripheral white blood cells. As a result of the likely selection against CUL4B deficient clones, only minimal populations (~3%) of LAMP2 deficient leukocytes were identified by flow cytometry. On the contrary, myocardial LAMP2 protein expression suggested random XCI. We demonstrate that contiguous CUL4B and LAMP2 loss-of-function copy number variations occur and speculate that male patients carrying similar defects could present with features of both CS and DD.


Assuntos
Proteínas Culina/genética , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adulto , Elementos Alu/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Éxons/genética , Feminino , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Doença de Depósito de Glicogênio Tipo IIb/fisiopatologia , Humanos , Mutação com Perda de Função/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Miocárdio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/genética , Inativação do Cromossomo X/genética
9.
Lab Invest ; 99(10): 1572-1592, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31186526

RESUMO

Farber disease (FD) is a rare lysosomal storage disorder (LSD) characterized by systemic ceramide accumulation caused by a deficiency in acid ceramidase (ACDase). In its classic form, FD manifests with painful lipogranulomatous nodules in extremities and joints, respiratory complications, and neurological involvement. Hepatosplenomegaly is commonly reported, and severe cases of FD cite liver failure as a cause of early death. Mice homozygous for an orthologous patient mutation in the ACDase gene (Asah1P361R/P361R) recapitulate the classical form of human FD. In this study, we demonstrate impaired liver function and elevation of various liver injury markers in Asah1P361R/P361R mice as early as 5 weeks of age. Histopathology analyses demonstrated significant formation and recruitment of foamy macrophages, invasion of neutrophils, progressive tissue fibrosis, increased cell proliferation and death, and significant storage pathology within various liver cell types. Lipidomic analyses revealed alterations to various lipid concentrations in both serum and liver tissue. A significant accumulation of ceramide and other sphingolipids in both liver and hepatocytes was noted. Sphingolipid acyl chains were also altered, with an increase in long acyl chain sphingolipids coinciding with a decrease in ultra-long acyl chains. Hepatocyte transcriptome analyses revealed significantly altered gene transcription. Molecular pathways related to inflammation were found activated, and molecular pathways involved in lipid metabolism were found deactivated. Altered gene transcription within the sphingolipid pathway itself was also observed. The data presented herein demonstrates that deficiency in ACDase results in liver pathology as well as sphingolipid and gene transcription profile changes that lead to impaired liver function.


Assuntos
Lipogranulomatose de Farber/patologia , Fígado/patologia , Animais , Morte Celular , Modelos Animais de Doenças , Lipogranulomatose de Farber/complicações , Lipogranulomatose de Farber/metabolismo , Hepatócitos/metabolismo , Hepatomegalia/etiologia , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/ultraestrutura , Cirrose Hepática/etiologia , Camundongos , Esfingolipídeos/metabolismo , Transcrição Gênica
10.
Glycobiology ; 28(6): 382-391, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548035

RESUMO

Blood group B glycosphingolipids (B-GSLs) are substrates of the lysosomal alpha-galactosidase A (AGAL). Similar to its major substrate-globotriaosylceramide (Gb3Cer)-B-GSLs are not degraded and accumulate in the cells of patients affected by an inherited defect of AGAL activity (Fabry disease-FD).The pancreas is a secretory organ known to have high biosynthesis of blood group GSLs. Herein, we provide a comprehensive overview of the biochemical and structural abnormalities in pancreatic tissue from two male FD patients with blood group B. In both patients, we found major accumulation of a variety of complex B-GSLs carrying predominantly hexa- and hepta-saccharide structures. The subcellular pathology was dominated by deposits containing B-glycoconjugates and autofluorescent ceroid. The contribution of Gb3Cer to the storage was minor. This abnormal storage pattern was specific for the pancreatic acinar epithelial cells. Other pancreatic cell types including those of islets of Langerhans were affected much less or not at all.Altogether, we provide evidence for a key role of B-antigens in the biochemical and morphological pathology of the exocrine pancreas in FD patients with blood group B. We believe that our findings will trigger further studies aimed at assessing the potential pancreatic dysfunction in this disease.


Assuntos
Doença de Fabry/metabolismo , Glicoesfingolipídeos/metabolismo , Pâncreas/metabolismo , Sistema ABO de Grupos Sanguíneos/metabolismo , Células Acinares/metabolismo , Células Acinares/ultraestrutura , Estudos de Casos e Controles , Doença de Fabry/sangue , Doença de Fabry/patologia , Galactose/análise , Galactose/metabolismo , Glicoesfingolipídeos/química , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Masculino , Pessoa de Meia-Idade , Pâncreas/ultraestrutura
11.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L406-L420, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167126

RESUMO

Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.


Assuntos
Ceramidase Ácida/fisiologia , Modelos Animais de Doenças , Lesão Pulmonar/etiologia , Pulmão/patologia , Animais , Líquido da Lavagem Broncoalveolar , Ceramidas/metabolismo , Homozigoto , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Knockout , Fenótipo , Fosfolipídeos/metabolismo , Testes de Função Respiratória
12.
Am J Pathol ; 187(4): 864-883, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28342444

RESUMO

Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.


Assuntos
Sistema Nervoso Central/anormalidades , Lipogranulomatose de Farber/complicações , Lipogranulomatose de Farber/patologia , Malformações do Sistema Nervoso/etiologia , Malformações do Sistema Nervoso/patologia , Ceramidase Ácida/metabolismo , Animais , Comportamento Animal , Sistema Nervoso Central/patologia , Cerebelo/patologia , Cerebelo/ultraestrutura , Cérebro/patologia , Cérebro/ultraestrutura , Homozigoto , Hidrocefalia/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora , Neurônios/patologia , Neurônios/ultraestrutura , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingolipídeos/metabolismo , Fatores de Tempo
13.
Am J Med Genet A ; 176(11): 2430-2434, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194816

RESUMO

Danon disease (DD) is an X-linked disorder caused by mutations in the lysosomal-associated membrane protein 2 (LAMP2) gene (Xq24). DD is characterized by cognitive deficit, myopathy, and cardiomyopathy in male patients. The phenotype is variable and mitigated in females. The timely identification of de-novo LAMP2 mutated family members, many of whom are heterozygous females, remains critical for their treatment and family counseling. DD laboratory testing builds on minimally invasive quantification of the LAMP2 protein in white blood cells and characterization of the specific mutation. This integrative approach is particularly helpful when assessing suspect female heterozygotes. LAMP2 exon-copy number variations (eCNVs) were so far reported only in X-hemizygous male DD probands. In heterozygous female DD probands, the wild-type allele may hamper the identification of an eCNV even if it results in the complete abolition of LAMP2 transcription and/or translation. To document the likely underappreciated rate of occurrence and point out numerous potential pitfalls of detection of the LAMP2 eCNVs, we present the first two DD heterozygote female probands who harbor novel multi-exon LAMP2 deletions. Critical for counseling and recurrence prediction, we also highlight the need to search for somatic-germinal mosaicism in DD families.


Assuntos
Variações do Número de Cópias de DNA/genética , Éxons/genética , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Adolescente , Adulto , Sequência de Bases , Criança , Família , Feminino , Heterozigoto , Humanos , Masculino , Linhagem , Adulto Jovem
14.
J Inherit Metab Dis ; 41(2): 221-229, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168031

RESUMO

Mucopolysaccharidosis type II (MPSII) is a rare X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene (IDS, Xq28). MPSII is characterized by skeletal deformities, hearing loss, airway obstruction, hepatosplenomegaly, cardiac valvular disease, and progressive neurological impairment. At the cellular level, IDS deficiency leads to lysosomal storage of glycosaminoglycans (GAGs), dominated by accumulation of dermatan and heparan sulfates. Human induced pluripotent stem cells (iPSC) represent an alternative system that complements the available MPSII murine model. Herein we report on the reprogramming of peripheral white blood cells from male and female MPSII patients into iPSC using a non-integrating protocol based on the Sendai virus vector system. We differentiated the iPSC lines into IDS deficient and GAG accumulating ß-Tubulin III+ neurons, GFAP+ astrocytes, and CNPase+ oligodendrocytes. The lysosomal system in these cells displayed structural abnormalities reminiscent of those previously found in patient tissues and murine IDS deficient neuronal stem cells. Furthermore, quantitative determination of GAGs revealed a moderate increase in GAG levels in IDS deficient neurons and glia. We also tested the effects of recombinant IDS and found that the exogenous enzyme was internalized from the culture media and partially decreased the intracellular GAG levels in iPSC-derived neural cells; however, it failed to completely prevent accumulation of GAGs. In summary, we demonstrate that this human iPSC based model expresses the cellular and biochemical features of MPSII, and thus represents a useful experimental tool for further pathogenesis studies as well as therapy development and testing.


Assuntos
Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Lisossomos/enzimologia , Mucopolissacaridose II/enzimologia , Células-Tronco Neurais/enzimologia , Neurogênese , Neuroglia/enzimologia , Neurônios/enzimologia , Astrócitos/enzimologia , Astrócitos/patologia , Linhagem da Célula , Células Cultivadas , Feminino , Humanos , Iduronato Sulfatase/genética , Células-Tronco Pluripotentes Induzidas/patologia , Lisossomos/patologia , Masculino , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Células-Tronco Neurais/patologia , Neuroglia/patologia , Neurônios/patologia , Células Precursoras de Oligodendrócitos/enzimologia , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/enzimologia , Oligodendroglia/patologia , Fenótipo
15.
Neurobiol Dis ; 105: 257-270, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28610891

RESUMO

Mucolipidosis type IV (MLIV) is a lysosomal storage disease exhibiting progressive intellectual disability, motor impairment, and premature death. There is currently no cure or corrective treatment. The disease results from mutations in the gene encoding mucolipin-1, a transient receptor potential channel believed to play a key role in lysosomal calcium egress. Loss of mucolipin-1 and subsequent defects lead to a host of cellular aberrations, including accumulation of glycosphingolipids (GSLs) in neurons and other cell types, microgliosis and, as reported here, cerebellar Purkinje cell loss. Several studies have demonstrated that N-butyldeoxynojirimycin (NB-DNJ, also known as miglustat), an inhibitor of the enzyme glucosylceramide synthase (GCS), successfully delays the onset of motor deficits, improves longevity, and rescues some of the cerebellar abnormalities (e.g., Purkinje cell death) seen in another lysosomal disease known as Niemann-Pick type C (NPC). Given the similarities in pathology between MLIV and NPC, we examined whether miglustat would be efficacious in ameliorating disease progression in MLIV. Using a full mucolipin-1 knockout mouse (Mcoln1-/-), we found that early miglustat treatment delays the onset and progression of motor deficits, delays cerebellar Purkinje cell loss, and reduces cerebellar microgliosis characteristic of MLIV disease. Quantitative mass spectrometry analyses provided new data on the GSL profiles of murine MLIV brain tissue and showed that miglustat partially restored the wild type profile of white matter enriched lipids. Collectively, our findings indicate that early miglustat treatment delays the progression of clinically relevant pathology in an MLIV mouse model, and therefore supports consideration of miglustat as a therapeutic agent for MLIV disease in humans.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Cerebelo/patologia , Inibidores Enzimáticos/uso terapêutico , Gliose/tratamento farmacológico , Transtornos dos Movimentos/tratamento farmacológico , Mucolipidoses , Células de Purkinje/efeitos dos fármacos , 1-Desoxinojirimicina/uso terapêutico , Animais , Antígenos CD/metabolismo , Contagem de Células , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Gliose/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/etiologia , Mucolipidoses/complicações , Mucolipidoses/genética , Mucolipidoses/patologia , Proteínas do Tecido Nervoso/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Células de Purkinje/patologia , Retina/patologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
16.
J Neurosci ; 35(21): 8091-106, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019327

RESUMO

Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol-sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1(I1061T), encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1(-/-) mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1(-/-) mouse, this Npc1(tm(I1061T)Dso) model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1(I1061T) protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability.


Assuntos
Alelos , Proteínas de Transporte/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína C1 de Niemann-Pick , Prevalência
17.
J Neurosci ; 33(26): 10815-27, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804102

RESUMO

Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2(-/-) mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin-proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2(-/-) neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.


Assuntos
Lisossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/metabolismo , Aminopeptidases/genética , Animais , Western Blotting , Células Cultivadas , Citosol/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Membranas/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Permeabilidade , Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Serina Proteases/genética , Tripeptidil-Peptidase 1
18.
Hum Mol Genet ; 21(7): 1534-43, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22180458

RESUMO

The purinosome is a multienzyme complex composed by the enzymes active in de novo purine synthesis (DNPS) that cells transiently assemble in their cytosol upon depletion or increased demand of purines. The process of purinosome formation has thus far been demonstrated and studied only in human epithelial cervical cancer cells (HeLa) and human liver carcinoma cells (C3A) transiently expressing recombinant fluorescently labeled DNPS proteins. Using parallel immunolabeling of various DNPS enzymes and confocal fluorescent microscopy, we proved purinosome assembly in HeLa, human hepatocellular liver carcinoma cell line (HepG2), sarcoma osteogenic cells (Saos-2), human embryonic kidney cells (HEK293), human skin fibroblasts (SF) and primary human keratinocytes (KC) cultured in purine-depleted media. Using the identical approach, we proved in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency that various mutations of ATIC and ADSL destabilize to various degrees of purinosome assembly and found that the ability to form purinosomes correlates with clinical phenotypes of individual ADSL patients. Our results thus shown that the assembly of functional purinosomes is fully dependent on the presence of structurally unaffected ATIC and ADSL complexes and presumably also on the presence of all the other DNPS proteins. The results also corroborate the hypothesis that the phenotypic severity of ADSL deficiency is mainly determined by structural stability and residual catalytic capacity of the corresponding mutant ADSL protein complexes, as this is prerequisite for the formation and stability of the purinosome and at least partial channeling of succinylaminoimidazolecarboxamide riboside-ADSL enzyme substrates-through the DNPS pathway.


Assuntos
Adenilossuccinato Liase/genética , Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/enzimologia , Células HeLa , Humanos , Hidroximetil e Formil Transferases/análise , Queratinócitos/enzimologia , Complexos Multienzimáticos/análise , Mutação , Nucleotídeo Desaminases/análise , Purinas/metabolismo , Pele/citologia
19.
J Inherit Metab Dis ; 37(1): 117-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23716275

RESUMO

Alu-mediated tandem duplication of exons 4 and 5 (g.15815_22218dup6404) is a novel mutation that has been detected in the LAMP2 gene (Xq24). This exon copy number variation was found in two brothers with the typical phenotype of Danon disease, including characteristic myocardial changes on magnetic resonance imaging. The 6.4 kb duplication was identified in both boys by a combination of exon dosage qPCR analyses and duplication breakpoint/junction mapping. The rearrangement results in a plethora of abnormal LAMP2 splicing variants and also in use of likely cryptic splice sites in the 3' terminus of LAMP2 gene. Although we found minute amounts of normal LAMP2B and LAMP2A mRNAs, no protein was detectable in peripheral blood leukocytes by flow cytometry in both brothers. Uniquely, the fraction of LAMP2-deficient granulocytes (0.06%) assessed by flow cytometry in the patients' asymptomatic mother substantially differed from the random distribution of X-chromosome inactivation in her leukocytes. This discrepancy was later explained by molecular genetic methods as a consequence of mosaic distribution of the mutation in her somatic tissues. Altogether, we report a novel and mosaically distributed exon copy number rearrangement in the LAMP2 gene and comment on obstacles this genetic setup presents to the overall cellular and molecular diagnostic algorithm of Danon disease. Our observations of the mosaicism in the asymptomatic mother suggest that similarly affected females could be a potentially under-diagnosed Danon disease carrier group and that LAMP2 flow cytometry, because of its supreme sensitivity, can be an efficient method for pedigree screening.


Assuntos
Éxons , Duplicação Gênica , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Adolescente , Adulto , Variações do Número de Cópias de DNA , Feminino , Citometria de Fluxo , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Granulócitos/citologia , Humanos , Leucócitos/citologia , Imageamento por Ressonância Magnética , Masculino , Mosaicismo , Mutação , Miocárdio/patologia , Linhagem , Fenótipo , Irmãos , Distribuição Tecidual , Adulto Jovem
20.
Virchows Arch ; 484(1): 135-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787787

RESUMO

Despite the adenoids are regularly removed in patients with mucopolysaccharidoses (MPS), the underlying tissue and cellular pathologies remain understudied. We characterized an (immuno)histopathologic and ultrastructural phenotype dominated by lysosomal storage changes in a specific subset of adenotonsillar paracortical cells in 8 MPS patients (3 MPS I, 3 MPS II, and 2 MPS IIIA). These abnormal cells were effectively detected by an antibody targeting the lysosomal membrane tetraspanin CD63. Important, CD63+ storage vacuoles in these cells lacked the monocytes/macrophages lysosomal marker CD68. Such a distinct patterning of CD63 and CD68 was not present in a patient with infantile neurovisceral variant of acid sphingomyelinase deficiency. The CD63+ storage pathology was absent in two MPS I patients who either received enzyme-replacement therapy or underwent hematopoietic stem cells transplantation prior the adenoidectomy. Our study demonstrates novel features of lysosomal storage patterning and suggests diagnostic utility of CD63 detection in adenotonsillar lymphoid tissue of MPS patients.


Assuntos
Mucopolissacaridoses , Humanos , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/tratamento farmacológico , Mucopolissacaridoses/genética , Tecido Linfoide/patologia , Lisossomos , Terapia de Reposição de Enzimas , Tetraspanina 30
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA