Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768252

RESUMO

Opioid use and withdrawal evokes behavioral adaptations such as drug seeking and anxiety, though the underlying neurocircuitry changes are unknown. The basolateral amygdala (BLA) regulates these behaviors through principal neuron activation. Excitatory BLA pyramidal neuron activity is controlled by feedforward inhibition provided, in part, by lateral paracapsular (LPC) GABAergic inhibitory neurons, residing along the BLA/external capsule border. LPC neurons express µ-opioid receptors (MORs) and are potential targets of opioids in the etiology of opioid-use disorders and anxiety-like behaviors. Here, we investigated the effects of opioid exposure on LPC neuron activity using immunohistochemical and electrophysiological approaches. We show that LPC neurons, and other nearby BLA GABA and non-GABA neurons, express MORs and δ-opioid receptors. Additionally, DAMGO, a selective MOR agonist, reduced GABA but not glutamate-mediated spontaneous postsynaptic currents in LPC neurons. Furthermore, in LPC neurons, abstinence from repeated morphine-exposure in vivo (10 mg/kg/day, 5 days, 2 days off) decrease the intrinsic membrane excitability, with a ~75% increase in afterhyperpolarization and ~40-50% enhanced adenylyl cyclase-dependent activity in LPC neurons. These data show that MORs in the BLA are a highly sensitive targets for opioid-induced inhibition and that repeated opioid exposure results in impaired LPC neuron excitability.


Assuntos
Tonsila do Cerebelo , Analgésicos Opioides , Ratos , Animais , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Neurônios GABAérgicos , Receptores Opioides
2.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208939

RESUMO

Obesity is a chronic state of energy imbalance that represents a major public health problem and greatly increases the risk for developing hypertension, hyperglycemia, and a multitude of related pathologies that encompass the metabolic syndrome. The underlying mechanisms and optimal treatment strategies for obesity, however, are still not fully understood. The control of energy balance involves the actions of circulating hormones on a widely distributed network of brain regions involved in the regulation of food intake and energy expenditure, including the arcuate nucleus of the hypothalamus. While obesity is known to disrupt neurocircuits controlling energy balance, including those in the hypothalamic arcuate nucleus, the pharmacological targeting of these central mechanisms often produces adverse cardiovascular and other off-target effects. This highlights the critical need to identify new anti-obesity drugs that can activate central neurocircuits to induce weight loss without negatively impacting blood pressure control. The renin-angiotensin system may provide this ideal target, as recent studies show this hormonal system can engage neurocircuits originating in the arcuate nucleus to improve energy balance without elevating blood pressure in animal models. This review will summarize the current knowledge of renin-angiotensin system actions within the arcuate nucleus for control of energy balance, with a focus on emerging roles for angiotensin II, prorenin, and angiotensin-(1-7) pathways.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Obesidade/metabolismo , Sistema Renina-Angiotensina , Animais , Ingestão de Alimentos , Metabolismo Energético , Humanos
3.
J Neurosci ; 39(3): 472-484, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30478032

RESUMO

Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and ß-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Hormônio Liberador da Corticotropina/fisiologia , Neurônios/fisiologia , Núcleos Parabraquiais/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Guanfacina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Ovariectomia , Técnicas de Patch-Clamp , Proteína Quinase C-delta/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Restrição Física , Estresse Psicológico/fisiopatologia
4.
Alcohol Clin Exp Res ; 43(8): 1695-1701, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31141179

RESUMO

BACKGROUND: Relapse is a critical barrier to effective long-term treatment of alcoholism, and stress is often cited as a key trigger to relapse. Numerous studies suggest that stress-induced reinstatement to drug-seeking behaviors is mediated by norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling interactions in the bed nucleus of the stria terminalis (BNST), a brain region critical to many behavioral and physiologic responses to stressors. Here, we sought to directly examine the effects of NE on BNST CRF neuron activity and determine whether these effects may be modulated by chronic intermittent EtOH (CIE) exposure or a single restraint stress. METHODS: Adult male CRF-tomato reporter mice were treatment-naïve, or either exposed to CIE for 2 weeks or to a single 1-hour restraint stress. Effects of application of exogenous NE on BNST CRF neuron activity were assessed via whole-cell patch-clamp electrophysiological techniques. RESULTS: We found that NE depolarized BNST CRF neurons in naïve mice in a ß-adrenergic receptor (AR)-dependent mechanism. CRF neurons from CIE- or stress-exposed mice had significantly elevated basal resting membrane potential compared to naïve mice. Furthermore, CIE and stress individually disrupted the ability of NE to depolarize CRF neurons, suggesting that both stress and CIE utilize ß-AR signaling to modulate BNST CRF neurons. Neither stress nor CIE altered the ability of exogenous NE to inhibit evoked glutamatergic transmission onto BNST CRF neurons as shown in naïve mice, a mechanism previously shown to be α-AR-dependent. CONCLUSIONS: Altogether, these findings suggest that stress and CIE interact with ß-AR signaling to modulate BNST CRF neuron activity, potentially disrupting the α/ß-AR balance of BNST CRF neuronal excitability. Restoration of α/ß-AR balance may lead to novel therapies for the alleviation of many stress-related disorders.


Assuntos
Neurônios Adrenérgicos/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Etanol/efeitos adversos , Norepinefrina/farmacologia , Restrição Física/fisiologia , Núcleos Septais/fisiologia , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas de Introdução de Genes , Ácido Glutâmico/fisiologia , Ácido Cinurênico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Norepinefrina/antagonistas & inibidores , Picrotoxina/farmacologia , Propranolol/farmacologia , Núcleos Septais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia
5.
Am J Physiol Endocrinol Metab ; 315(6): E1204-E1211, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300010

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors reduce body weight, lower blood pressure (BP), and improve insulin sensitivity in animal models of cardiometabolic syndrome. These effects are generally attributed to reduced angiotensin (ANG) II formation; however, these therapies also increase levels of ANG-(1-7), a beneficial hormone opposing ANG II actions. We hypothesized that this ANG-(1-7) generation contributes to the insulin-sensitizing effects of ACE inhibition in obese mice. Adult male C57BL/6J mice were placed on a 60% high-fat diet for 11 wk. During the last 3 wk of diet, mice received normal water or water containing the ACE inhibitor captopril (50 mg/l) as well as the ANG-(1-7) mas receptor antagonist A779 (400 or 800 ng·kg-1·min-1) or saline vehicle via subcutaneous osmotic minipumps. At the end of treatment, arterial BP was measured, and hyperinsulinemic-euglycemic clamps were performed in conscious obese mice receiving vehicle, captopril, captopril plus A779, or A779 ( n = 6-13/group). Captopril reduced body weight (28 ± 2 vs. 41 ± 2 g saline; P = 0.001), lowered systolic BP (109 ± 6 vs. 144 ± 7 mmHg saline; P = 0.041), and improved whole-body insulin sensitivity (steady-state glucose infusion rate: 31 ± 4 vs. 16 ± 2 mg·kg-1·min-1 saline; P = 0.001) in obese mice. A779 attenuated captopril-mediated improvements in insulin sensitivity (23 ± 2 mg·kg-1·min-1; P = 0.042), with no effect on body weight (32 ± 2 g; P = 0.441) or BP (111 ± 7 mmHg; P = 0.788). There was no effect of A779 alone on cardiometabolic outcomes. These data suggest that insulin-sensitizing effects of ACE inhibition are in part due to activation of ANG-(1-7)/ mas receptor pathways and provide new insight into mechanisms underlying the positive metabolic effects of these therapies.


Assuntos
Angiotensina I/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Glicemia/metabolismo , Captopril/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/farmacologia , Proto-Oncogene Mas
6.
Alcohol Clin Exp Res ; 39(11): 2154-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26503065

RESUMO

BACKGROUND: Ethanol (EtOH) modulation of central amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin-releasing factor (CRF) receptor (CRFR) system. Previous work has predominantly focused on EtOH × CRF interactions on the CeA GABA circuitry; however, our laboratory recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine whether EtOH modulates CeA glutamate transmission via activation of CRF signaling. METHODS: The effects of EtOH on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRF(CeAhDTR) ) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRF(DTA) mice) ablated CRF neurons throughout the central nervous system, as assessed by quantitative reverse transcriptase polymerase chain reaction quantification of CRF mRNA. RESULTS: Acute bath application of EtOH significantly increased sEPSC frequency in a concentration-dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRFR1 and CRFR2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, EtOH did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of EtOH to enhance CeA sEPSC frequency was not altered in CRF(CeAhDTR) mice despite a ~78% reduction in CeA CRF cell counts. The ability of EtOH to enhance CeA sEPSC frequency was also not altered in the CRF(DTA) mice despite a 3-fold reduction in CRF mRNA levels. CONCLUSIONS: These findings demonstrate that EtOH enhances spontaneous glutamatergic transmission in the CeA via a CRFR-dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF.


Assuntos
Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Etanol/farmacologia , Ácido Glutâmico/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de Hormônio Liberador da Corticotropina/agonistas , Transmissão Sináptica/fisiologia
7.
Proc Natl Acad Sci U S A ; 109(5): E278-87, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22219357

RESUMO

The bed nucleus of the stria terminalis (BNST) is a critical region for alcohol/drug-induced negative affect and stress-induced reinstatement. NMDA receptor (NMDAR)-dependent plasticity, such as long-term potentiation (LTP), has been postulated to play key roles in alcohol and drug addiction; yet, to date, little is understood regarding the mechanisms underlying LTP of the BNST, or its regulation by ethanol. Acute and chronic exposure to ethanol modulates glutamate transmission via actions on NMDARs. Despite intense investigation, tests of subunit specificity of ethanol actions on NMDARs using pharmacological approaches have produced mixed results. Thus, we use a conditional GluN2B KO mouse line to assess both basal and ethanol-dependent function of this subunit at glutamate synapses in the BNST. Deletion of GluN2B eliminated LTP, as well as actions of ethanol on NMDAR function. Further, we show that chronic ethanol exposure enhances LTP formation in the BNST. Using KO-validated pharmacological approaches with Ro25-6981 and memantine, we provide evidence suggesting that chronic ethanol exposure enhances LTP in the BNST via paradoxical extrasynaptic NMDAR involvement. These findings demonstrate that GluN2B is a key point of regulation for ethanol's actions and suggest a unique role of extrasynaptic GluN2B-containing receptors in facilitating LTP.


Assuntos
Etanol/farmacologia , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Etanol/administração & dosagem , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Sinapses/efeitos dos fármacos
8.
J Neurosci ; 33(3): 950-60, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325234

RESUMO

A growing literature suggests that catecholamines and corticotropin-releasing factor (CRF) interact in a serial manner to activate the bed nucleus of the stria terminalis (BNST) to drive stress- or cue-induced drug- and alcohol-seeking behaviors. Data suggest that these behaviors are driven in part by BNST projections to the ventral tegmental area (VTA). Together, these findings suggest the existence of a CRF-signaling pathway within the BNST that is engaged by catecholamines and regulates the activity of BNST neurons projecting to the VTA. Here we test three aspects of this model to determine: (1) whether catecholamines modify CRF neuron activity in the BNST; (2) whether CRF regulates excitatory drive onto VTA-projecting BNST neurons; and (3) whether this system is altered by ethanol exposure and withdrawal. A CRF neuron fluorescent reporter strategy was used to identify BNST CRF neurons for whole-cell patch-clamp analysis in acutely prepared slices. Using this approach, we found that both dopamine and isoproterenol significantly depolarized BNST CRF neurons. Furthermore, using a fluorescent microsphere-based identification strategy we found that CRF enhances the frequency of spontaneous EPSCs onto VTA-projecting BNST neurons in naive mice. This action of CRF was occluded during acute withdrawal from chronic intermittent ethanol exposure. These findings suggest that dopamine and isoproterenol may enhance CRF release from local BNST sources, leading to enhancement of excitatory neurotransmission on VTA-projecting neurons, and that this pathway is engaged by patterns of alcohol exposure and withdrawal known to drive excessive alcohol intake.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Dopamina/farmacologia , Feminino , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Septais/metabolismo , Área Tegmentar Ventral/metabolismo
9.
Alcohol Clin Exp Res (Hoboken) ; 48(3): 488-498, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311347

RESUMO

BACKGROUND: Clinical and preclinical research indicates that gastric weight loss surgeries, such as Roux-en-Y gastric bypass surgery, can induce alcohol use disorder (AUD). While numerous mechanisms have been proposed for these effects, one relatively unexplored potential mechanism is physical damage to the gastric branch of the vagus nerve, which can occur during bypass surgery. Therefore, we hypothesized that direct damage to the gastric branch of the vagus nerve, without altering other aspects of gastric anatomy, could result in increased alcohol intake. METHODS: To test this hypothesis, we compared alcohol intake and preference in multiple models in male Sprague-Dawley rats that received selective gastric branch vagotomy (VX) with rats who underwent sham surgery. Because the vagus nerve regulates hypothalamic-pituitary-adrenal (HPA) axis function, and alterations to HPA function are critical to the escalation of non-dependent alcohol intake, we also tested the hypothesis that gastric VX increases HPA function. RESULTS: We found that VX increases alcohol intake and preference in the every-other-day, two-bottle choice test and increases preference for 1 g/kg alcohol in the conditioned place preference test. The effects were selective for alcohol, as sucrose intake and preference were not altered by VX. We also found that VX increases corticotropin releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN), increases putative PVN CRF neuronal action potential firing, and increases corticosterone levels. CONCLUSIONS: Overall, these findings suggest that the vagus nerve may play a critical role in regulating HPA axis function via modulation of PVN CRF mRNA expression and putative PVN CRF neuronal activity. Furthermore, disruptions to vagal regulation of HPA axis function may increase alcohol intake and preference.

10.
Front Neurosci ; 18: 1375440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957186

RESUMO

Introduction: Alcohol use disorder (AUD) is commonly associated with anxiety disorders and enhanced stress-sensitivity; symptoms that can worsen during withdrawal to perpetuate continued alcohol use. Alcohol increases neuroimmune activity in the brain. Our recent evidence indicates that alcohol directly modulates neuroimmune function in the central amygdala (CeA), a key brain region regulating anxiety and alcohol intake, to alter neurotransmitter signaling. We hypothesized that cannabinoids, such as cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), which are thought to reduce neuroinflammation and anxiety, may have potential utility to alleviate alcohol withdrawal-induced stress-sensitivity and anxiety-like behaviors via modulation of CeA neuroimmune function. Methods: We tested the effects of CBD and CBD:THC (3:1 ratio) on anxiety-like behaviors and neuroimmune function in the CeA of mice undergoing acute (4-h) and short-term (24-h) withdrawal from chronic intermittent alcohol vapor exposure (CIE). We further examined the impact of CBD and CBD:THC on alcohol withdrawal behaviors in the presence of an additional stressor. Results: We found that CBD and 3:1 CBD:THC increased anxiety-like behaviors at 4-h withdrawal. At 24-h withdrawal, CBD alone reduced anxiety-like behaviors while CBD:THC had mixed effects, showing increased center time indicating reduced anxiety-like behaviors, but increased immobility time that may indicate increased anxiety-like behaviors. These mixed effects may be due to altered metabolism of CBD and THC during alcohol withdrawal. Immunohistochemical analysis showed decreased S100ß and Iba1 cell counts in the CeA at 4-h withdrawal, but not at 24-h withdrawal, with CBD and CBD:THC reversing alcohol withdrawal effects.. Discussion: These results suggest that the use of cannabinoids during alcohol withdrawal may lead to exacerbated anxiety depending on timing of use, which may be related to neuroimmune cell function in the CeA.

11.
Cannabis Cannabinoid Res ; 8(2): 230-240, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36409719

RESUMO

Background: The endocannabinoid (eCB) system plays an important role in homeostatic regulation of anxiety and stress responses; however, the eCB system can be disrupted following traumatic stressors. Additionally, traumatic or chronic stressors that occur during adulthood or early life can cause long-lasting disturbances in the eCB system. These alterations interfere with hypothalamic-pituitary-adrenal axis function and may be involved in lifelong increased fear and anxiety behaviors as well as increased risk for development of post-traumatic stress disorder (PTSD). Methods: This review focuses on the implications of trauma and significant stressors on eCB functionality and neural pathways, both in adolescence and into adulthood, as well as the current state of testing for CBD efficacy in treating pediatric and adult patients suffering from stress-induced eCB dysregulation. Articles were searched via Pubmed and included studies examining eCB modulation of stress-related disorders in both clinical settings and preclinical models. Conclusion: Given the potential for lifelong alterations in eCB signaling that can mediate stress responsiveness, consideration of pharmaceutical or nutraceutical agents that impact eCB targets may improve clinical outcomes in stress-related disorders. However, caution may be warranted in utilization of medicinal cannabinoid products that contain delta-9-tetrahydrocannabinol due to pronounced euphorigenic effects and potential to exacerbate stress-related behaviors. Other cannabinoid products, such as cannabidiol (CBD), have shown promise in reducing stress-related behaviors in pre-clinical models. Overall, pre-clinical evidence supports CBD as a potential treatment for stress or anxiety disorders resulting from previously stressful events, particularly by reducing fearful behavior and promoting extinction of contextual fear memories, which are hallmarks of PTSD. However, very limited clinical research has been conducted examining the potential effectiveness of CBD in this regard and should be examined further.


Assuntos
Canabidiol , Canabinoides , Adulto , Adolescente , Humanos , Criança , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Ansiedade/tratamento farmacológico , Canabinoides/uso terapêutico , Endocanabinoides
12.
Addict Neurosci ; 92023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162404

RESUMO

Alcohol use disorders (AUDs) are common mental health issues worldwide and can lead to other chronic diseases. Stress is a major factor in the development and continuation of AUDs, and adolescent alcohol exposure can lead to enhanced stress-responsivity and increased risk for AUD development in adulthood. The exact mechanisms behind the interaction between adolescence, stress, and alcohol are not fully understood and require further research. In this regard, the nucleus of the tractus solitarius (NTS) provides dense norepinephrine projections to the extended amygdala, providing a key pathway for stress-related alcohol behaviors. While NTS norepinephrine neurons are known to be alcohol sensitive, whether adolescent alcohol disrupts NTS-norepinephrine neuron development and if this is related to altered stress-sensitivity and alcohol preference in adulthood has not previously been examined. Here, we exposed male and female C57Bl/6J mice to the commonly used adolescent intermittent ethanol (AIE) vapor model during postnatal day 28-42 and examined AIE effects on: 1) tyrosine hydroxylase (TH) mRNA expression in the NTS across various ages (postnatal day 21-90), 2) behavioral responses to acute stress in the light/dark box test in adulthood, 3) NTS TH neuron responses to acute stress and ethanol challenges in adulthood, and 4) ethanol conditioned place preference behavior in adulthood. Overall the findings indicate that AIE alters NTS TH mRNA expression and increases anxiety-like behaviors following acute stress exposure in a sex-dependent manner. These mRNA expression and behavioral changes occur in the absence of AIE-induced changes in NTS TH neuron sensitivity to either acute stress or acute alcohol exposure or changes to ethanol conditioned place preference.

13.
J Pharmacol Exp Ther ; 343(2): 451-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22904357

RESUMO

Ethanol (EtOH) potentiation of GABAergic neurotransmission in the basolateral amygdala (BLA) may contribute to the acute anxiolytic effects of this drug. Previous studies have shown that BLA pyramidal neurons receive GABAergic input from two distinct sources: local interneurons and a cluster of GABAergic cells termed lateral paracapsular (LPCS) interneurons. It is noteworthy that whereas EtOH enhances local GABAergic synapses via a presynaptic increase in GABA release, EtOH potentiation of LPCS inhibition is mediated via a distinct mechanism that requires adrenoceptor (AR) activation. Here, we sought to further characterize the interaction between the AR system and EtOH enhancement of LPCS GABAergic synapses by using in vitro electrophysiology techniques in male Sprague-Dawley rats. Exogenous norepinephrine (NE) enhanced LPCS-evoked inhibitory postsynaptic currents (eIPSCs) via the activation of ß-ARs, because this effect was blocked by propranolol. EtOH potentiation of LPCS eIPSCs was also blocked by propranolol and significantly reduced by NE pretreatment, suggesting that NE and EtOH may enhance LPCS inhibition via a common mechanism. EtOH enhancement of LPCS eIPSCs was significantly reduced by a selective ß1-, but not ß2- or ß3-, AR antagonist, and both EtOH and NE potentiation of LPCS IPSCs was blocked by postsynaptic disruption of cAMP signaling. These data suggest that EtOH enhances LPCS synapses via a postsynaptic ß1-AR, cAMP-dependent cascade. Because enhancement of LPCS inhibition can reduce anxiety-like behaviors, these findings shed light on a novel mechanism that may play a role in some of the anxiolytic effects of EtOH that are thought to contribute to the development and progression of alcoholism.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Receptores Adrenérgicos beta 1/fisiologia , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Masculino , Norepinefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
14.
Front Mol Neurosci ; 15: 888345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35866156

RESUMO

Alcohol use disorder is a highly significant medical condition characterized by an impaired ability to stop or control alcohol use, compulsive alcohol seeking behavior, and withdrawal symptoms in the absence of alcohol. Understanding how alcohol modulates neurocircuitry critical for long term and binge-like alcohol use, such as the central amygdala (CeA), may lead to the development of novel therapeutic strategies to treat alcohol use disorder. In clinical studies, reduction in the volume of the amygdala has been linked with susceptibility to relapse to alcohol use. Preclinical studies have shown the involvement of the CeA in the effects of alcohol use, with lesions of the amygdala showing a reduction in alcohol drinking, and manipulations of cells in the CeA altering alcohol drinking. A great deal of work has shown that acute alcohol, as well as chronic alcohol exposure via intake or dependence models, alters glutamatergic and GABAergic transmission in the CeA. The CeA, however, contains heterogeneous cell populations and distinct subregional differences in neurocircuit architecture which may influence the mechanism by which alcohol modulates CeA function overall. The current review aimed to parse out the differences in alcohol effects on the medial and lateral subregions of the CeA, and what role neuroinflammatory cells and markers, the endocannabinoid system, and the most commonly studied neuropeptide systems play in mediating these effects. A better understanding of alcohol effects on CeA subregional cell type and neurocircuit function may lead to development of more selective pharmacological interventions for alcohol use disorder.

15.
Front Behav Neurosci ; 16: 801825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330845

RESUMO

The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.

16.
Neuropharmacology ; 205: 108918, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896402

RESUMO

The Central Amygdala (CeA) has been heavily implicated in many aspects of alcohol use disorder. Ethanol (EtOH) has been shown to modulate glutamatergic transmission in the lateral subdivision of the CeA, however, the exact mechanism of this modulation is still unclear. EtOH exposure is associated with increased pro-inflammatory cytokines in the CeA, and inhibition of neuroimmune cells (microglia and astrocytes) has previously been shown to reduce EtOH drinking in animal models. Since neuroimmune activation seems to be involved in many of the effects of EtOH, we hypothesized that acute EtOH exposure will increase excitatory glutamatergic transmission in the CeA via modulation of neuroimmune cells. Using ex vivo brain slice whole-cell patch clamp electrophysiology, it was found that a physiologically relevant concentration of EtOH (20 mM) significantly increased presynaptic glutamatergic transmission in the CeA. Pharmacologic and chemogenetic inhibition of astrocyte function significantly reduced the ability of EtOH to modulate CeA glutamatergic transmission with minimal impact of microglia inhibition. This finding prompted additional studies examining whether direct neuroimmune activation through lipopolysaccharide (LPS) might lead to an increase in the glutamatergic transmission in the CeA. It was found that LPS modulation of glutamatergic transmission was limited by microglia activation and required astrocyte signaling. Taken together these results support the hypothesis that acute EtOH enhances lateral CeA glutamatergic transmission through an astrocyte mediated mechanism.


Assuntos
Astrócitos/efeitos dos fármacos , Núcleo Central da Amígdala/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Etanol/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Camundongos
17.
Brain Res Bull ; 189: 121-129, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998791

RESUMO

Alcohol use disorder (AUD) is a rapidly growing concern in the United States. Current trending escalations of alcohol use are associated with a concurrent rise in alcohol-related end-organ damage, increasing risk for further diseases. Alcohol-related end-organ damage can be driven by autonomic nervous system dysfunction, however studies on alcohol effects on autonomic control of end-organ function are lacking. Alcohol intake has been shown to reduce insulin secretions from the pancreas. Pancreatic insulin release is controlled in part by preganglionic parasympathetic motor neurons residing in the dorsal motor nucleus of the vagus (DMV) that project to the pancreas. How these neurons are affected by alcohol exposure has not been directly examined. Here we investigated the effects of acute ethanol (EtOH) application on DMV pancreatic-projecting neurons with whole-cell patch-clamp electrophysiology. We found that bath application of EtOH (50 mM) for greater than 30 min significantly enhanced the frequency of spontaneous inhibitory post synaptic current (sIPSC) events of DMV pancreatic-projecting neurons suggesting a presynaptic mechanism of EtOH to increase GABAergic transmission. Thirty-minute EtOH application also decreased action potential firing of these neurons. Pretreatment of DMV slices with 20 µM fluoxetine, a selective serotonin reuptake inhibitor, also increased GABAergic transmission and decreased action potential firing of these DMV neurons while occluding any further effects of EtOH application, suggesting a critical role for serotonin in mediating EtOH effects in the DMV. Ultimately, decreased DMV motor output may lead to alterations in pancreatic secretions. Further studies are needed to fully understand EtOH's influence on DMV neurons as well as the consequences of changes in parasympathetic output to the pancreas.


Assuntos
Etanol , Serotonina , Etanol/farmacologia , Fluoxetina/farmacologia , Insulina/farmacologia , Neurônios Motores/fisiologia , Pâncreas , Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Nervo Vago
18.
Front Physiol ; 13: 871962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615681

RESUMO

Cannabigerol is a cannabinoid compound synthesized by Cannabis sativa, which in its acid form acts as the substrate for both Δ9-tetraydrocannabinol and cannabidiol formation. Given its lack of psychoactive effects, emerging research has focused on cannabigerol as a potential therapeutic for health conditions including algesia, epilepsy, anxiety, and cancer. While cannabigerol can bind to classical cannabinoid receptors, it is also an agonist at α2-adrenoreceptors (α2AR) which, when activated, inhibit presynaptic norepinephrine release. This raises the possibility that cannabigerol could activate α2AR to reduce norepinephrine release to cardiovascular end organs to lower blood pressure. Despite this possibility, there are no reports examining cannabigerol cardiovascular effects. In this study, we tested the hypothesis that acute cannabigerol administration lowers blood pressure. Blood pressure was assessed via radiotelemetry at baseline and following intraperitoneal injection of cannabigerol (3.3 and 10 mg/kg) or vehicle administered in a randomized crossover design in male C57BL/6J mice. Acute cannabigerol significantly lowered mean blood pressure (-28 ± 2 mmHg with 10 mg/kg versus -12 ± 5 mmHg vehicle, respectively; p = 0.018), with no apparent dose responsiveness (-22 ± 2 mmHg with 3.3 mg/kg). The depressor effect of cannabigerol was lower in magnitude than the α2AR agonist guanfacine and was prevented by pretreatment with the α2AR antagonist atipamezole. These findings suggest that acute cannabigerol lowers blood pressure in phenotypically normal mice likely via an α2AR mechanism, which may be an important consideration for therapeutic cannabigerol administration.

19.
Front Physiol ; 13: 933706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784876

RESUMO

Obesity is associated with insulin resistance, glucose intolerance, inflammation, and altered neuronal activity in brain regions controlling metabolic functions including food intake, energy expenditure, and glucose homeostasis, such as the hypothalamus. In this study, we tested the hypothesis that inhibiting inflammation with minocycline could reduce adverse metabolic consequences associated with high-fat diet (HFD)-induced obesity in mice and sought to determine if metabolic improvements were associated with reduced hypothalamic microglia activity. Male C57Bl/6J mice were placed on 60% HFD for 12 weeks, with minocycline (40 mg/kg, p.o.) or normal tap water given during the last 6 weeks of diet. Age-matched mice maintained on control diet were used as an additional comparator group. Metabolic function was assessed during the last week of treatment. Ramified (resting) and non-ramified (active) microglia were quantified in the hypothalamus following immunohistochemical staining of ionized calcium-binding adaptor 1 (Iba-1) and further assessed by RNAseq. In HFD fed mice, minocycline attenuated body mass and adiposity without altering food intake suggesting enhanced energy expenditure. Minocycline also attenuated hyperinsulinemia and improved insulin sensitivity in HFD mice. Increased microglial activation and autophagy gene network changes were observed in the paraventricular nucleus (PVN) of the hypothalamus of HFD mice, which was prevented by minocycline treatment. Contrary to PVN findings, there were no significant effects of either HFD or minocycline on microglia activation in the hypothalamic arcuate nucleus or central amygdala. Together, these findings suggest that minocycline improves HFD-induced weight gain and insulin resistance in part by reducing inflammatory processes in the PVN, a key hypothalamic region regulating metabolic function.

20.
Neuropharmacology ; 201: 108814, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624301

RESUMO

Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Norepinefrina/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Hormônio Liberador da Corticotropina/fisiologia , Comportamento de Procura de Droga , Humanos , Camundongos , Norepinefrina/fisiologia , Ratos , Receptores Adrenérgicos/fisiologia , Estresse Psicológico/psicologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA