Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(1): 145-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103079

RESUMO

Global environmental concerns drive research toward the development of new eco-friendly compounds to replace pollutant chemicals. This study focuses on optimizing the production of trehalose lipids (TLs), which are glycolipid biosurfactants (BS) with various applications like antimicrobial or surface tension reduction. New microorganism sources, growth conditions, medium composition, purification conditions, and physicochemical properties of TLs are studied. Addressing a microscale approach, TLs production was successfully achieved using Rhodotorula sp. and Rhodococcus erythropolis to compare, with different media compositions including glucose-based and salt media supplemented with glycerol, glucose, n-hexadecane, n-dodecane. Liquid-liquid extraction using ethyl acetate and methanol was employed for compound extraction, followed by characterization using analytical methods such as Thin layer chromatography (TLC), High performance liquid chromatography (HPLC), and UHPLC. The produced TLs exhibited a minimum surface tension of 47 mN/m and a critical micellar concentration of 4.4 mg/mL. This study also identified Rhodotorula sp. as a new sustainable producer of TLs with improved productivity.


Assuntos
Rhodotorula , Trealose , Glicolipídeos , Micelas , Glucose , Tensoativos/química
2.
ChemMedChem ; 18(24): e202300410, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37845182

RESUMO

While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Solubilidade , Testes de Sensibilidade Microbiana
3.
Antioxidants (Basel) ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439560

RESUMO

Salicornia ramosissima J. Woods is a halophyte plant recognized as a promising natural ingredient and will eventually be recognized a salt substitute (NaCl). However, its shelf-life and applicability in several food matrices requires the use of drying processes, which may have an impact on its nutritional and functional value. The objective of this study was to evaluate the effect of oven and freeze-drying processes on the nutritional composition, volatile profile, phytochemical content, and bioactivity of S. ramosissima using several analytical tools (LC-DAD-ESI-MS/MS and SPME-GC-MS) and bioactivity assays (ORAC, HOSC, and ACE inhibition and antiproliferative effect on HT29 cells). Overall, results show that the drying process changes the chemical composition of the plant. When compared to freeze-drying, the oven-drying process had a lower impact on the nutritional composition but the phytochemical content and antioxidant capacity were significantly reduced. Despite this, oven-dried and freeze-dried samples demonstrated similar antiproliferative (17.56 mg/mL and 17.24 mg/mL, respectively) and antihypertensive (24.56 mg/mL and 18.96 mg/mL, respectively) activities. The volatile composition was also affected when comparing fresh and dried plants and between both drying processes: while for the freeze-dried sample, terpenes corresponded to 57% of the total peak area, a decrease to 17% was observed for the oven-dried sample. The oven-dried S. ramosissima was selected to formulate a ketchup and the product formulated with 2.2% (w/w) of the oven-dried plant showed a good consumer acceptance score. These findings support the use of dried S. ramosissima as a promising functional ingredient that can eventually replace the use of salt.

4.
Food Res Int ; 131: 109026, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247467

RESUMO

This work aimed to contribute to the nutritional and functional characterization of roasted baru nuts, a seed widely consumed and produced in Brazil. Baru nut was characterized in terms of its nutritional value and volatile composition (SPME-GC-MS analysis). The ultrasound assisted extraction was used to extract free and bound phenolic compounds that were identified by LC-DAD-ESI-MS/MS method. Bioactivity assays were carried out to evaluate the antioxidant activity (ORAC and HOSC assay) and anticancer effect (inhibition of HT29 cell growth and targeting of cancer stemness) of baru nut extracts and phenolic compounds. Results showed that baru is a good source of protein and monounsaturated fatty acids, specifically oleic acid (47.20 g/100 g). The predominant volatile compounds are hexanal (71.18%) and 2,5-dimethyl-pyrazine (9.43%). The main phenolic compounds identified were gallic acid and its derivatives, such as gallic acid esters and gallotannins. Among all, gallic acid and methyl gallate seemed to be the main compounds responsible for the high antioxidant activity. The antiproliferative effect evaluated of baru extracts in HT29 cell line showed ability to impair cell growth in both monolayer and spheroid cultures and to reduce ALDH+ population. These results supply new information about the functional compounds presents in baru nut, which are important sources of natural antioxidants and antiproliferative compounds.


Assuntos
Antioxidantes/análise , Dipteryx/química , Valor Nutritivo , Nozes/química , Fenóis/análise , Brasil , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Ácidos Graxos/análise , Ácido Gálico/análogos & derivados , Ácido Gálico/análise , Cromatografia Gasosa-Espectrometria de Massas , Células HT29 , Humanos , Taninos Hidrolisáveis/análise , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Sementes/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA