Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928331

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Assuntos
Mitocôndrias , Neurônios , Estresse Oxidativo , Espécies Reativas de Oxigênio , Rotenona , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/deficiência , Rotenona/toxicidade , Rotenona/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/etiologia , Linhagem Celular Tumoral , Debilidade Muscular/metabolismo , Debilidade Muscular/induzido quimicamente , Debilidade Muscular/patologia , Sobrevivência Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Ataxia , Doenças Mitocondriais
2.
Pharmacol Res ; 196: 106918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703962

RESUMO

There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.

3.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764216

RESUMO

Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.


Assuntos
Doenças Cardiovasculares , Café , Humanos , Doenças Cardiovasculares/prevenção & controle , Estresse Oxidativo , Antioxidantes , Biomarcadores , Inflamação
4.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764345

RESUMO

The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.

5.
J Physiol ; 600(3): 569-581, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34891216

RESUMO

Statins are prescribed for the treatment of elevated cholesterol, but they may negatively affect metabolism, muscle performance, and the response to training. Coenzyme Q10 (CoQ10) supplementation may alleviate these effects. Combined simvastatin and CoQ10 treatment during physical training has never been tested. We studied the response to 8 weeks training (maximal oxygen uptake ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ ), fat oxidation (MFO), the workload at which MFO occurred, and muscle strength) in statin naive dyslipidaemic patients who received simvastatin (40 mg/day) with (S + Q, n = 9) or without (S + Pl, n = 10) CoQ10 supplementation (2 × 200 mg/day) or placebo (Pl + Pl, n = 7) in a randomized, double-blind placebo-controlled study. V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ and maximal workload increased with training (main effect of time, P < 0.05). MFO increased from 0.29 ± 0.10, 0.26 ± 0.10, and 0.38 ± 0.09 to 0.42 ± 0.09, 0.38 ± 0.10 and 0.48 ± 0.16 g/min in S + Q, S + Pl, and Pl + Pl, respectively (main effect of time, P = 0.0013). The workload at MFO increased from 75 ± 25, 56 ± 23, and 72 ± 17 to 106 ± 25, 84 ± 13 and 102 ± 31 W in S + Q, S + Pl, and Pl + Pl, respectively (main effect of time, P < 0.0001). Maximal voluntary contraction and rate of force development were unchanged. Exercise improved aerobic physical capacity and simvastatin with or without CoQ10 supplementation did not inhibit this adaptation. The similar increases in MFO and in the workload at which MFO occurred in response to training shows that the ability to adapt substrate selection and oxidation rates is preserved with simvastatin treatment, despite the potential negative impact of simvastatin at the mitochondrial level. CoQ10 supplementation does not augment this adaptation. KEY POINTS: Simvastatins are prescribed for treatment of elevated cholesterol, but they may negatively affect metabolism, muscle performance and the response to training. Coenzyme Q10 (CoQ10) supplementation may alleviate some of these effects. We found that simvastatin treatment does not negatively affect training-induced adaptations of substrate oxidation during exercise. Likewise, maximal oxygen uptake increases with physical training also in patients in treatment with simvastatin. CoQ10 supplementation in simvastatin-treated patients presents no advantage in the adaptations to physical training Simvastatin treatment decreases plasma concentrations of total CoQ10, but this can be alleviated by simultaneous supplementation with CoQ10.


Assuntos
Sinvastatina , Ubiquinona , Suplementos Nutricionais , Exercício Físico/fisiologia , Humanos , Músculos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
6.
Heart Fail Rev ; 26(6): 1437-1445, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32157481

RESUMO

Metformin is considered a safe anti-hyperglycemic drug for patients with type 2 diabetes (T2D); however, information on its impact on heart failure-related outcomes remains inconclusive. The current systematic review explored evidence from randomized clinical trials (RCTs) reporting on the impact of metformin in modulating heart failure-related markers in patients with or without T2D. Electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible studies. Included studies were those assessing the use of metformin as an intervention, and also containing the comparison group on placebo, and all articles had to report on measurable heart failure-related indices in individuals with or without T2D. The modified Downs and Black checklist was used to evaluate the risk of bias. Overall, nine studies met the inclusion criteria, enrolling a total of 2486 patients. Although summarized evidence showed that metformin did not affect left ventricular function, this antidiabetic drug could improve myocardial oxygen consumption concomitant to reducing prominent markers of heart failure such as n-terminal pro-brain natriuretic peptide and low-density lipoprotein levels, inconsistently between diabetic and nondiabetic patients. Effective modulation of some heart failure-related outcomes with metformin treatment was related to its beneficial effects in ameliorating insulin resistance and blocking pro-inflammatory markers such as the aging-associated cytokine CCL11 (C-C motif chemokine ligand 11). Overall, although such beneficial effects were observed with metformin treatment, additional RCTs are necessary to improve our understanding on its modulatory effects on heart failure-related outcomes especially in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Metformina , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068459

RESUMO

Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.


Assuntos
Músculo Esquelético/metabolismo , Polifenóis/farmacologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Músculo Esquelético/efeitos dos fármacos , Polifenóis/química
8.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375340

RESUMO

Evidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: -0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: -0.31 [95% CI: -0.54, -0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.


Assuntos
Adipocinas/metabolismo , Biomarcadores , Suplementos Nutricionais , Peroxidação de Lipídeos/efeitos dos fármacos , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Ubiquinona/análogos & derivados , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Viés de Publicação , Ubiquinona/administração & dosagem
9.
Molecules ; 25(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266114

RESUMO

Evidence on the beneficial effects of resveratrol supplementation on cardiovascular disease-related profiles in patients with type 2 diabetes (T2D) is conflicting, while its impact on renal function and blood pressure measurements remains to be established in these patients. The current meta-analysis included randomized controlled trials (RCTs) reporting on the impact of resveratrol supplementation on markers of renal function and blood pressure in patients with T2D on hypoglycemic medication. Electronic databases such as MEDLINE, Cochrane Library, Scopus, and EMBASE were searched for eligible studies from inception up to June 2020. The random and fixed effects model was used in the meta-analysis. A total of five RCTs met the inclusion criteria and involved 388 participants with T2D. Notably, most of the participants were on metformin therapy, or metformin in combination with other hypoglycemic drugs such as insulin and glibenclamide. Pooled estimates showed that resveratrol supplementation in patients with T2D lowered the levels of fasting glucose (SMD: -0.06 [95% CI: -0.24, 0.12]; I2 = 4%, p = 0.39) and insulin (SMD: -0.08 [95% CI: -0.50, 0.34], I2 = 73%, p = 0.002) when compared to those on placebo. In addition, supplementation significantly lowered systolic blood pressure (SMD: -5.77 [95% CI: -8.61, -2.93], I2 = 66%, p = 0.02) in these patients. Although resveratrol supplementation did not affect creatinine or urea levels, it reduced the total protein content (SMD: -0.19 [95% CI: -0.36, -0.02]; I2 = 91%, p = 0.001). In all, resveratrol supplementation in hypoglycemic therapy improves glucose control and lowers blood pressure; however, additional evidence is necessary to confirm its effect on renal function in patients with T2D.


Assuntos
Biomarcadores/análise , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Hipoglicemiantes/administração & dosagem , Nefropatias/prevenção & controle , Resveratrol/uso terapêutico , Antioxidantes/uso terapêutico , Pressão Sanguínea , Quimioterapia Combinada , Humanos , Testes de Função Renal
10.
Molecules ; 25(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294890

RESUMO

The current study explored the effect of isoorientin on the metabolic activity and lipid accumulation in fully differentiated 3T3-L1 adipocytes. To achieve this, the 3T3-L1 pre-adipocytes were differentiated for eight days and treated with various concentrations of isoorientin (0.1-100 µM) for four hours. Subsequently, the metabolic activity, lipid accumulation, and mitochondrial respiration were assessed. Furthermore, to unravel the molecular mechanisms that might elucidate the bioactivity of isoorientin, protein expression of the genes involved in insulin signaling and energy expenditure, such as AKT and AMPK, were investigated. The results showed that isoorientin, at different doses, could block lipid storage and enhance glycerol release, with a concomitant improvement of the metabolic activity and mitochondrial function. Although the observed beneficial effects of isoorientin on these cultured 3T3-L1 adipocytes were not consistent at all concentrations, it was clear that doses between 1 and 10 µM were most effective compared to the untreated control. Moreover, the activity of isoorientin was comparable to tested positive controls of CL-316,2431, isoproterenol, insulin, and metformin. Mechanistically, protein expression of AKT and AMPK, was enhanced with isoorientin exposure, suggesting their partial role in modulating lipid metabolism and mitochondrial biogenesis. Indeed, our results showed that isoorientin has the ability to enhance mitochondrial respiration, as we observed an increase in the ATP and oxygen consumption rate. Therefore, we concluded that isoorientin has a potential to impact mitochondrial activity, lipid metabolism and energy expenditure using an in vitro experimental model of obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Luteolina/farmacologia , Mitocôndrias/efeitos dos fármacos , Obesidade/metabolismo , Células 3T3-L1 , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Animais , Dioxóis/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Isoproterenol/farmacologia , Metformina/farmacologia , Camundongos , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Molecules ; 24(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813554

RESUMO

Menaquinone-7 (MK7) is a member of the vitamin K family in which interest has considerably increased over the last decade, mainly due to its beneficial role in human health. MK7 can be produced by synthesis or fermentation, and its purity profile can differ depending on methodologies and extraction procedures. Finished formulations show a high heterogeneity of purity profiles, as well as frequent discrepancies in the nominal content, compared to the actual title. The present study compared purity profiles of different raw material and related them to their stability in normal (12 months/25 °C/60%RH) and accelerated conditions (6 months/40 °C/75% RH) in order to test their performance in the presence of different common excipients. Results showed higher purity profile results in enhanced stability, and this could explain title discrepancies found in finished products, which are present on the market worldwide.


Assuntos
Composição de Medicamentos/métodos , Vitamina K 2/análogos & derivados , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Estabilidade de Medicamentos , Fermentação , Estrutura Molecular , Pós , Vitamina K 2/análise , Vitamina K 2/síntese química , Vitamina K 2/química
12.
Ecotoxicol Environ Saf ; 145: 476-482, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28780446

RESUMO

Cd is known for its carcinogenic effects, however its mechanism of toxicity and in particular its ability to promote oxidative stress is debated. In fact, although it is considered a redox-inactive metal, at high concentration Cd was shown to promote indirectly oxidative stress. In this study we investigated metal accumulation in ex vivo exposed trout (Oncorhynchus mykiss) erythrocytes and Cd dose-dependent effect in terms of RBC viability, cytosolic and mitochondrial ROS levels as well as its effects on mitochondrial membrane depolarization, hemoglobin stability and precipitation. In the concentration range used, Cd did not affect cell viability. However, metal accumulation was associated with an increase in all oxidative indexes evaluated, except mitochondrial superoxide anion production that, on the contrary, was significantly decreased, probably due to a lowered respiration rate associated with interference of Cd with complex I, II and III, as suggested by the observed Cd-dependent mitochondrial membrane depolarization. On the other hand, hemoglobin destabilisation seems to be the major trigger of oxidative stress in this cell type.


Assuntos
Cádmio/toxicidade , Eritrócitos/efeitos dos fármacos , Oncorhynchus mykiss/sangue , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Ecol Appl ; 26(8): 2609-2620, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27865031

RESUMO

The prediction of mosquito abundance is of central interest in addressing mosquito population dynamics and in forecasting the associated emerging and re-emerging diseases. However, little work has focused on the systematic evaluation of how well adult mosquito abundance can be predicted as a function of observational resolutions, aggregation scales, and prediction lead time. We use a state space reconstruction (SSR) approach to compare the predictability of mosquito population dynamics at weekly, biweekly, and monthly scales. We focus on the analysis of Aedes vexans and Culiseta melanura populations monitored in Brunswick County (North Carolina, USA) and find that prediction over a 7-d lead time is improved when daily observations are used, compared to the commonly used once-per-week sample. Our results demonstrate that daily observations of mosquito abundance contribute to improving mosquito predictability in two ways: (1) daily observations better capture fluctuations over short timescales, which are missed when sampling at coarser resolutions, and (2) the aggregation of daily abundance observations reduces the impact of noise, thereby increasing the predictability of mosquito population dynamics as the aggregation scale is increased. We show that the evaluation of population dynamical models based on observed and predicted abundance can lead to a spuriously high apparent performance, due to the high autocorrelation in the observations used to update the model state at each successive time step. We show that the comparison of predicted and observed population change, expressed through per capita growth rates, leads to a more informative performance measure.


Assuntos
Aedes , Animais , Previsões , Insetos Vetores , North Carolina , Dinâmica Populacional
14.
Ecotoxicol Environ Saf ; 134P1: 280-285, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27566895

RESUMO

Homeostasis of metal ions is critical for life and excessive exposure can promote cellular damage that could be due to oxidative damage. In this context we evaluated the effects of three different elements (copper, zinc and aluminum) on oxidative stress and mitochondrial functionality in nucleated trout erythrocytes (Oncorhynchus mykiss). Flowcytometric measurements using MitoProbe and DCFDA-H2 as fluorescent probes, indicated that redox active copper was able to influence all the biological parameters considered while redox inert, zinc and aluminum, show no significant effects. Toxicity of Al and Zn represent a debated argument and their ability to interact with other endogenous metal ions/metal binding proteins could play a role modulating their cellular toxicity.

15.
J Clin Biochem Nutr ; 57(1): 21-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26236096

RESUMO

Reactive oxygen species not only cause damage but also have a physiological role in the protection against pathogens and in cell signalling. Mitochondrial nutrients, such as coenzyme Q10 and α-lipoic acid, beside their acknowledged antioxidant activities, show interesting features in relation to their redox state and consequent biological activity. In this study, we tested whether oral supplementation with 200 mg/day of coenzyme Q10 alone or in association with 200 mg/die of α-lipoic acid for 15 days on 16 healthy subjects was able to modulate the oxidative status into different compartments (plasma and cells), in basal condition and following an oxidative insult in peripheral blood lymphocytes exposed in vitro to H2O2. Data have shown that tested compounds produced antioxidant and bioenergetic effects improving oxidative status of the lipid compartment and mitochondrial functionality in peripheral blood lymphocytes. Simultaneously, an increased intracellular reactive oxygen species level was observed, although they did not lead to enhanced DNA oxidative damage. Coenzyme Q10 and α-lipoic acid produced beneficial effects also steering intracellular redox poise toward a pro-oxidant environment. In contrast with other antioxidant molecules, pro-oxidant activities of tested mitochondrial nutrients and consequent oxidant mediated signalling, could have important implications in promoting adaptive response to oxidative stress.

16.
J Clin Biochem Nutr ; 57(1): 66-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26236103

RESUMO

Functional foods that provide benefits beyond their traditional nutritional value have attracted much interest. Aim of the study was to evaluate the nutritional and the functional properties of a frozen ready-to-eat soup containing barley and pigmented vegetables. Both glycaemic index and the glyceamic load of ready-to-eat soup were evaluated in vivo. Moreover the bioavailability of carotenoids (lutein and beta-carotene) and the effect on lipid profile and lipid peroxidation were studied in 38 volunteers whose diet was supplemented for two weeks with a daily portion (250 g) of the ready-to-eat soup. Plasma levels of carotenoids (lutein and beta-carotene) and plasma total antioxidant capacity significantly increased after 2 weeks of treatment. Furthermore, we observed a decrease in the levels of lipids (total cholesterol and low density lipoprotein-cholesterol) and of markers of lipid peroxidation (oxidized low density lipoprotein and lipid hydroperoxides) in plasma of all subjects. The glyceamic index of the product was 36, therefore it could be considered a low glyceamic index food. An accurate selection of vegetable foods results in a palatable and healthy product that provides benefits on plasma lipids and lipid peroxidation (Protocol number 211525).

17.
Antioxidants (Basel) ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275651

RESUMO

Oxidative stress (OS) is implicated in several chronic diseases. Extra-cellular superoxide dismutase (ec-SOD) catalyses the dismutation of superoxide anions with a protective role in endothelial cells. In chronic kidney disease (CKD), OS and thyroid dysfunction (low fT3 syndrome) are frequently present, but their relationship has not yet been investigated. This cohort study evaluated ec-SOD activity in CKD patients during haemodialysis, divided into "acute haemodialytic patients" (AH, 1-3 months of treatment) and "chronic haemodialytic patients" (CH, treated for a longer period). We also evaluated plasmatic total antioxidant capacity (TAC) and its relationships with thyroid hormones. Two basal samples ("basal 1", obtained 3 days after the last dialysis; and "basal 2", obtained 2 days after the last dialysis) were collected. On the same day of basal 2, a sample was collected 5 and 10 min after the standard heparin dose and at the end of the procedure. The ec-SOD values were significantly higher in CH vs. AH in all determinations. Moreover, the same patients had lower TAC values. When the CH patients were divided into two subgroups according to fT3 levels (normal or low), we found significantly lower ec-SOD values in the group with low fT3 in the basal, 5, and 10 min samples. A significant correlation was also observed between fT3 and ec-SOD in the basal 1 samples. These data, confirming OS and low fT3 syndrome in patients with CKD, suggest that low fT3 concentrations can influence ec-SOD activity and could therefore potentially contribute to endothelial oxidative damage in these patients.

18.
Toxicol Rep ; 12: 234-243, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356855

RESUMO

Lipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells. Briefly, assays performed included metabolic activity, cholesterol content, mitochondrial respiration, and prominent markers of oxidative stress, as well as determining changes in mitochondrial potential, mitochondrial production of reactive oxygen species, and intracellular antioxidant levels like glutathione, glutathione peroxidase and superoxide dismutase. Cellular damage was probed using fluorescent stains, annexin V and propidium iodide. Our results indicated that prolonged exposure (24-hours) to palmitic acid doses ≥ 0.5 mM significantly impaired mitochondrial oxidative status, leading to enhanced mitochondrial membrane potential and increased mitochondrial ROS production. While palmitic acid dose of 1 mM appeared to induce prominent cardiomyoblasts damage, likely because of its capacity to increase cholesterol content/ lipid peroxidation and severely suppressing intracellular antioxidants. Interestingly, short-term (4-hours) exposure to palmitic acid, especially for lower doses (≤ 0.25 mM), could improve metabolic activity, mitochondrial function and protect against oxidative stress induced myocardial damage. Potentially suggesting that, depending on the dose consumed or duration of exposure, consumption of saturated fatty acids such as palmitic acid can differently affect the myocardium. However, these results are still preliminary, and in vivo research is required to understand the significance of maintaining intracellular antioxidants to protect against oxidative stress induced by lipid overload.

19.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107339

RESUMO

Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.

20.
Biochimie ; 204: 33-40, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36067903

RESUMO

Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácido Mevalônico , Colesterol , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Dislipidemias/complicações , Dislipidemias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA