Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 220(6): 1061-1070, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31058287

RESUMO

BACKGROUND: Enterococcus faecalis is considered to be the most important species of enterococci responsible for blood stream infections in critically ill patients. In blood, the complement system is activated via the classical pathway (CP), the lectin pathway (LP), or the alternative pathway (AP), and it plays a critical role in opsonophagocytosis of bacteria including E faecalis. METHODS: In a mouse model of enterococcus peritonitis, BALB-C mice were challenged with a high dose of E faecalis 12 hours after intraperitoneal administration of anti-Factor H (FH) antibodies or isotype control. Four hours later, control mice developed higher bacterial burden in blood and organs compared with mice treated with anti-FH antibodies. RESULTS: We demonstrate that complement recognition molecules C1q, CL-11, and murine ficolin-A bind the enterococcus and drive the CP and the LP in human and mouse. We further describe that E faecalis evades the AP by recruitment of FH on its surface. Our results show a strong C3b deposition on E faecalis via both the CP and the LP but not through the AP. CONCLUSIONS: These findings indicate that E faecalis avoids the complement phagocytosis by the AP via sequestering complement FH from the host blood.


Assuntos
Fator H do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Enterococcus faecalis/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Peritonite/imunologia , Animais , Anticorpos Antibacterianos/sangue , Complemento C3b/imunologia , Complemento C4b/imunologia , Lectina de Ligação a Manose da Via do Complemento/imunologia , Modelos Animais de Doenças , Humanos , Lectinas , Camundongos , Camundongos Endogâmicos BALB C , Peritonite/microbiologia , Peritonite/patologia , Fagocitose/imunologia , Ficolinas
2.
Clin Immunol ; 197: 27-33, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145330

RESUMO

Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are clinical conditions caused by trauma, lung infection or sepsis. ALI/ARDS is associated with massive recruitment of neutrophils into the lung with release of reactive oxygen species and excessive inflammatory response that damage alveolar tissue. Here we report the successful use of a potent recombinant chemotaxis inhibitory protein (rCHIPS) derived from Staphylococcus aureus in reducing the severity of ALI/ARDS. Treatment with rCHIPS reduces pulmonary inflammation and permeability in mice after intranasal administration of lipopolysaccharide (LPS). rCHIPS treatment significantly reduces lung myeloperoxidase (MPO) activity, pro-inflammatory cytokines, broncho-alveolar lavage (BAL) fluid protein content as well as histopathological changes. In addition, treatment with rCHIPS significantly diminishes neutrophils and leukocytes recruitment into lung tissue after LPS administration and hence protects mice from reactive oxygen species mediated lung injury. Our finding reveals potential therapeutic benefits of using rCHIPS for the treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Bactérias/farmacologia , Citocinas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Peroxidase/efeitos dos fármacos , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Feminino , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas Recombinantes/farmacologia
3.
FASEB J ; 31(5): 2210-2219, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188176

RESUMO

All 3 activation pathways of complement-the classic pathway (CP), the alternative pathway, and the lectin pathway (LP)- converge into a common central event: the cleavage and activation of the abundant third complement component, C3, via formation of C3-activating enzymes (C3 convertases). The fourth complement component, C4, and the second component, C2, are indispensable constituents of the C3 convertase complex, C4bC2a, which is formed by both the CP and the LP. Whereas in the absence of C4, CP can no longer activate C3, LP retains a residual but physiologically critical capacity to convert native C3 into its activation fragments, C3a and C3b. This residual C4 and/or C2 bypass route is dependent on LP-specific mannan-binding lectin-associated serine protease-2. By using various serum sources with defined complement deficiencies, we demonstrate that, under physiologic conditions LP-specific C4 and/or C2 bypass activation of C3 is mediated by direct cleavage of native C3 by mannan-binding lectin-associated serine protease-2 bound to LP-activation complexes captured on ligand-coated surfaces.-Yaseen, S., Demopulos, G., Dudler, T., Yabuki, M., Wood, C. L., Cummings, W. J., Tjoelker, L. W., Fujita, T., Sacks, S., Garred, P., Andrew, P., Sim, R. B., Lachmann, P. J., Wallis, R., Lynch, N., Schwaeble, W. J. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2.


Assuntos
Ativação do Complemento/fisiologia , Complemento C2/metabolismo , Complemento C3/metabolismo , Complemento C4/metabolismo , Lectinas/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Humanos
4.
Proc Natl Acad Sci U S A ; 111(14): 5301-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706855

RESUMO

Modern medicine has established three central antimicrobial therapeutic concepts: vaccination, antibiotics, and, recently, the use of active immunotherapy to enhance the immune response toward specific pathogens. The efficacy of vaccination and antibiotics is limited by the emergence of new pathogen strains and the increased incidence of antibiotic resistance. To date, immunotherapy development has focused mainly on cytokines. Here we report the successful therapeutic application of a complement component, a recombinant form of properdin (Pn), with significantly higher activity than native properdin, which promotes complement activation via the alternative pathway, affording protection against N. menigitidis and S. pneumoniae. In a mouse model of infection, we challenged C57BL/6 WT mice with N. menigitidis B-MC58 6 h after i.p. administration of Pn (100 µg/mouse) or buffer alone. Twelve hours later, all control mice showed clear symptoms of infectious disease while the Pn treated group looked healthy. After 16 hours, all control mice developed sepsis and had to be culled, while only 10% of Pn treated mice presented with sepsis and recoverable levels of live Meningococci. In a parallel experiment, mice were challenged intranasally with a lethal dose of S. pneumoniae D39. Mice that received a single i.p. dose of Pn at the time of infection showed no signs of bacteremia at 12 h postinfection and had prolonged survival times compared with the saline-treated control group (P < 0.0001). Our findings show a significant therapeutic benefit of Pn administration and suggest that its antimicrobial activity could open new avenues for fighting infections caused by multidrug-resistant neisserial or streptococcal strains.


Assuntos
Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis/isolamento & purificação , Infecções Pneumocócicas/prevenção & controle , Properdina/farmacologia , Animais , Vacinas Bacterianas/administração & dosagem , Relação Dose-Resposta a Droga , Infecções Meningocócicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia
5.
Proc Natl Acad Sci U S A ; 110(41): 16426-31, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24065820

RESUMO

Complement receptors (CRs), expressed notably on myeloid and lymphoid cells, play an essential function in the elimination of complement-opsonized pathogens and apoptotic/necrotic cells. In addition, these receptors are crucial for the cross-talk between the innate and adaptive branches of the immune system. CR3 (also known as Mac-1, integrin αMß2, or CD11b/CD18) is expressed on all macrophages and recognizes iC3b on complement-opsonized objects, enabling their phagocytosis. We demonstrate that the C3d moiety of iC3b harbors the binding site for the CR3 αI domain, and our structure of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b. Based on extensive structural analysis, we suggest that the choice between a ligand glutamate or aspartate for coordination of a receptor metal ion-dependent adhesion site-bound metal ion is governed by the secondary structure of the ligand. Comparison of our structure to the CR2:C3d complex and the in vitro formation of a stable CR3:C3d:CR2 complex suggests a molecular mechanism for the hand-over of CR3-bound immune complexes from macrophages to CR2-presenting cells in lymph nodes.


Assuntos
Complemento C3b/metabolismo , Imunidade Inata/imunologia , Antígeno de Macrófago 1/química , Macrófagos/metabolismo , Modelos Moleculares , Proteínas Opsonizantes/química , Fagocitose/imunologia , Biologia Computacional , Escherichia coli , Humanos , Antígeno de Macrófago 1/metabolismo , Proteínas Opsonizantes/metabolismo , Conformação Proteica
6.
Hum Mol Genet ; 22(23): 4857-69, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23873044

RESUMO

It is a longstanding puzzle why non-coding variants in the complement factor H (CFH) gene are more strongly associated with age-related macular degeneration (AMD) than functional coding variants that directly influence the alternative complement pathway. The situation is complicated by tight genetic associations across the region, including the adjacent CFH-related genes CFHR3 and CFHR1, which may themselves influence the alternative complement pathway and are contained within a common deletion (CNP147) which is associated with protection against AMD. It is unclear whether this association is mediated through a protective effect of low plasma CFHR1 concentrations, high plasma CFH or both. We examined the triangular relationships of CFH/CFHR3/CFHR1 genotype, plasma CFH or CFHR1 concentrations and AMD susceptibility in combined case-control (1256 cases, 1020 controls) and cross-sectional population (n = 1004) studies and carried out genome-wide association studies of plasma CFH and CFHR1 concentrations. A non-coding CFH SNP (rs6677604) and the CNP147 deletion were strongly correlated both with each other and with plasma CFH and CFHR1 concentrations. The plasma CFH-raising rs6677604 allele and raised plasma CFH concentration were each associated with AMD protection. In contrast, the protective association of the CNP147 deletion with AMD was not mediated by low plasma CFHR1, since AMD-free controls showed increased plasma CFHR1 compared with cases, but it may be mediated by the association of CNP147 with raised plasma CFH concentration. The results are most consistent with a regulatory locus within a 32 kb region of the CFH gene, with a major effect on plasma CFH concentration and AMD susceptibility.


Assuntos
Proteínas Sanguíneas/genética , Proteínas Inativadoras do Complemento C3b/genética , Proteínas Inativadoras do Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Alelos , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Fator H do Complemento/genética , Estudos Transversais , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Íntrons , Degeneração Macular/imunologia , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
7.
Nature ; 458(7240): 890-3, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19225461

RESUMO

The complement system is an essential component of the innate and acquired immune system, and consists of a series of proteolytic cascades that are initiated by the presence of microorganisms. In health, activation of complement is precisely controlled through membrane-bound and soluble plasma-regulatory proteins including complement factor H (fH; ref. 2), a 155 kDa protein composed of 20 domains (termed complement control protein repeats). Many pathogens have evolved the ability to avoid immune-killing by recruiting host complement regulators and several pathogens have adapted to avoid complement-mediated killing by sequestering fH to their surface. Here we present the structure of a complement regulator in complex with its pathogen surface-protein ligand. This reveals how the important human pathogen Neisseria meningitidis subverts immune responses by mimicking the host, using protein instead of charged-carbohydrate chemistry to recruit the host complement regulator, fH. The structure also indicates the molecular basis of the host-specificity of the interaction between fH and the meningococcus, and informs attempts to develop novel therapeutics and vaccines.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboidratos/química , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Mimetismo Molecular , Neisseria meningitidis/metabolismo , Sítios de Ligação , Fator H do Complemento/imunologia , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/imunologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Nanomedicine ; 11(8): 2109-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169151

RESUMO

Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. FROM THE CLINICAL EDITOR: Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting.


Assuntos
Complemento C1q/imunologia , Fator H do Complemento/imunologia , Imunidade Inata , Macrófagos/imunologia , Nanotubos de Carbono/efeitos adversos , Linhagem Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Ativação do Complemento , Proteínas do Sistema Complemento , Humanos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Fagocitose
9.
Nanomedicine ; 10(6): 1287-99, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24607938

RESUMO

Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. FROM THE CLINICAL EDITOR: This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fagocitose/efeitos dos fármacos , Linhagem Celular , Complemento C1q/imunologia , Citocinas/imunologia , Humanos , Macrófagos/imunologia , Nanotubos de Carbono/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 108(31): 12839-44, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768352

RESUMO

The complement system is a key component of innate and adaptive immune responses. Complement regulation is critical for prevention and control of disease. We have determined the crystal structure of the complement regulatory enzyme human factor I (fI). FI is in a proteolytically inactive form, demonstrating that it circulates in a zymogen-like state despite being fully processed to the mature sequence. Mapping of functional data from mutants of fI onto the structure suggests that this inactive form is maintained by the noncatalytic heavy-chain allosterically modulating activity of the light chain. Once the ternary complex of fI, a cofactor and a substrate is formed, the allosteric inhibition is released, and fI is oriented for cleavage. In addition to explaining how circulating fI is limited to cleaving only C3b/C4b, our model explains the molecular basis of disease-associated polymorphisms in fI and its cofactors.


Assuntos
Fator I do Complemento/química , Fator I do Complemento/genética , Polimorfismo Genético , Estrutura Terciária de Proteína , Regulação Alostérica , Sítios de Ligação/genética , Domínio Catalítico , Complemento C3b/química , Complemento C3b/metabolismo , Complemento C4b/química , Complemento C4b/metabolismo , Fator I do Complemento/metabolismo , Cristalização , Cristalografia por Raios X , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Predisposição Genética para Doença/genética , Glicosilação , Humanos , Modelos Moleculares , Mutação , Ligação Proteica
11.
Front Immunol ; 15: 1368852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933264

RESUMO

The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.


Assuntos
Coagulação Sanguínea , Complemento C1q , Fator H do Complemento , Via Clássica do Complemento , Fibrina , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/imunologia , Fibrina/metabolismo , Complemento C1q/metabolismo , Complemento C1q/imunologia , Via Clássica do Complemento/imunologia , Ligação Proteica , Ativação do Complemento/imunologia , Plaquetas/imunologia , Plaquetas/metabolismo
12.
J Exp Med ; 204(10): 2277-83, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17893204

RESUMO

Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 402, is linked to approximately 50% of attributable risks for AMD. We present the crystal structure of the region of FH containing the polymorphic amino acid His402 in complex with an analogue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell surface. The structure demonstrates direct coordination of ligand by the disease-associated polymorphic residue, providing a molecular explanation of the genetic observation. This glycan-binding site occupies the center of an extended interaction groove on the regulator's surface, implying multivalent binding of sulfated GAGs. This finding is confirmed by structure-based site-directed mutagenesis, nuclear magnetic resonance-monitored binding experiments performed for both H402 and Y402 variants with this and another model GAG, and analysis of an extended GAG-FH complex.


Assuntos
Envelhecimento/fisiologia , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Sítios de Ligação , Fator H do Complemento/genética , Cristalografia por Raios X , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Ligantes , Modelos Moleculares , Mutação/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Sacarose/análogos & derivados , Sacarose/química , Sacarose/metabolismo , Propriedades de Superfície
13.
Immunobiology ; 228(2): 152349, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805857

RESUMO

The abnormal neurodevelopment secondary to in utero adversities, such as hypoxia, malnutrition and maternal infections, underlies schizophrenia (SZ) etiology. As the genes of MBL-associated serine proteases (MASP) of the complement lectin pathway, MASP1 and MASP2, are expressed in the developing cortex and are functionally important for neuronal migration, we hypothesize that the malfunction ofl-ficolin-MASP arm may also be involved in schizophrenia pathophysiology as it was shown for MBL-MASP complexes. We investigated serum l-ficolin and plasma MASP-2 levels, the activity of l-ficolin-bound MASP-2, as well as an array of the complement-related variables in chronic schizophrenic patients in the acute phase of the disease and controls without physical or mental diagnoses. The median concentration of l-ficolin in Armenian controls was 3.66 µg/ml and similar to those reported for other Caucasian populations. SZ-cases had âˆ¼40 % increase in serum l-ficolin (median 5.08 µg/ml; P < 0.0024). In the pooled sample, l-ficolin level was higher in males than in females (P < 0.0031), but this gender dichotomy was not affecting the variable association with schizophrenia (P < 0.016). Remarkably, MASP-2 plasma concentration showed gender-dependent significant variability in the group of patients but not in controls. When adjusted for gender and gender*diagnosis interaction, a significantly high MASP-2 level in female patients versus female controls was observed (median: 362 ng/ml versus 260 ng/ml, respectively; P < 0.0020). A significant increase in l-ficolin-bound MASP-2 activity was also observed in schizophrenia (on the median, cases vs controls: 7.60 vs 6.50 RU; P < 0.021). Correlation analyses of the levels of l-ficolin and MASP-2, l-ficolin-(MASP-2) activity and the demographic data did not show any significant association with the age of individuals, family history, age at onset and duration of the illness, and smoking. Noteworthy, the levels of l-ficolin and MASP-2 in circulation were significantly associated with the type of schizophrenia (paranoid SZ-cases had much higher l-ficolin (P < 0.0035) and lower MASP-2 levels than the other types combined (P < 0.049)). Correlations were also found between: (i) the classical pathway functional activity and l-ficolin level (rs = 0.19, P < 0.010); (ii) the alternative pathway functional activity and MASP-2 level (rs = 0.26, P < 0.00035); (iii) the activity of l-ficolin-bound MASP2 and the downstream C2 component haemolytic activity (rs = -0.19, P < 0.017); and (iv) l-ficolin and the upstream C-reactive protein (CRP) serum concentrations (r = 0.28, P < 0.018). Overall, the results showed l-ficolin-related lectin pathway alterations in schizophrenia pathophysiology. It is likely that in addition to the MBL-MASP component over-activity reported previously, the alterations of the lectin pathway in schizophrenia also involve variations of l-ficolin-(MASP-2) on protein concentration and activity levels.


Assuntos
Lectina de Ligação a Manose , Esquizofrenia , Masculino , Humanos , Feminino , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Lectinas , Lectina de Ligação a Manose da Via do Complemento , Proteínas do Sistema Complemento , Lectina de Ligação a Manose/genética , Ficolinas
14.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376569

RESUMO

The complement system is a key component of the innate immune response to viruses and proinflammatory events. Exaggerated complement activation has been attributed to the induction of a cytokine storm in severe SARS-CoV-2 infection. However, there is also an argument for the protective role of complement proteins, given their local synthesis or activation at the site of viral infection. This study investigated the complement activation-independent role of C1q and C4b-binding protein (C4BP) against SARS-CoV-2 infection. The interactions of C1q, its recombinant globular heads, and C4BP with the SARS-CoV-2 spike and receptor binding domain (RBD) were examined using direct ELISA. In addition, RT-qPCR was used to evaluate the modulatory effect of these complement proteins on the SARS-CoV-2-mediated immune response. Cell binding and luciferase-based viral entry assays were utilised to assess the effects of C1q, its recombinant globular heads, and C4BP on SARS-CoV-2 cell entry. C1q and C4BP bound directly to SARS-CoV-2 pseudotype particles via the RBD domain of the spike protein. C1q via its globular heads and C4BP were found to reduce binding as well as viral transduction of SARS-CoV-2 spike protein expressing lentiviral pseudotypes into transfected A549 cells expressing human ACE2 and TMPRSS2. Furthermore, the treatment of the SARS-CoV-2 spike, envelope, nucleoprotein, and membrane protein expressing alphaviral pseudotypes with C1q, its recombinant globular heads, or C4BP triggered a reduction in mRNA levels of proinflammatory cytokines and chemokines such as IL-1ß, IL-8, IL-6, TNF-α, IFN-α, and RANTES (as well as NF-κB) in A549 cells expressing human ACE2 and TMPRSS2. In addition, C1q and C4BP treatment also reduced SARS-CoV-2 pseudotype infection-mediated NF-κB activation in A549 cells expressing human ACE2 and TMPRSS2. C1q and C4BP are synthesised primarily by hepatocytes; however, they are also produced by macrophages, and alveolar type II cells, respectively, locally at the pulmonary site. These findings support the notion that the locally produced C1q and C4BP can be protective against SARS-CoV-2 infection in a complement activation-independent manner, offering immune resistance by inhibiting virus binding to target host cells and attenuating the infection-associated inflammatory response.


Assuntos
COVID-19 , Proteína de Ligação ao Complemento C4b , Humanos , Proteína de Ligação ao Complemento C4b/química , Proteína de Ligação ao Complemento C4b/metabolismo , Complemento C1q/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Ligação Proteica
15.
FEBS J ; 290(9): 2412-2436, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36178468

RESUMO

Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl-CoA-dependent enzyme homologous to xenobiotic metabolizing arylamine N-acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N-malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N-acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two "tunnel-like" entries separated by a "bridge-like" helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N-terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl-CoA better than malonyl-CoA, dimerization changes the active site to allow malonyl-CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl-group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl-group, acetyl-CoA cannot form such stabilizing interactions, while longer acyl-CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.


Assuntos
Arilamina N-Acetiltransferase , Fusarium , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/genética , Fusarium/genética , Isoenzimas/genética , Filogenia , Acetilcoenzima A , Acetiltransferases
16.
BMC Vet Res ; 8: 91, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734447

RESUMO

BACKGROUND: The aim of the present study was to develop a haemolytic assay for the study of the complement system in dairy goats (Capra aegagrus hircus) and to characterize the major goat complement system proteins. RESULTS: The commonly used sheep erythrocyte sensitized with rabbit antibodies were not sensitive to lysis by goat serum, but the combination of human red blood cells (RBC) plus rabbit antibodies was the best option found for goat complement assay. A buffer based on HEPES instead of the classical veronal (barbitone) was developed. Three proteins were isolated: factor H, C1q and C3 and these were compared with the corresponding human proteins. A novel affinity chromatography technique was developed for isolation of factor H. CONCLUSIONS: Human RBC plus rabbit antibodies were a suitable option for haemolytic assays. The isolated proteins are similar to the human counterparts.


Assuntos
Ensaio de Atividade Hemolítica de Complemento/veterinária , Proteínas do Sistema Complemento/metabolismo , Cabras/sangue , Cabras/metabolismo , Animais , Anticorpos , Ensaio de Atividade Hemolítica de Complemento/métodos , Proteínas do Sistema Complemento/genética , Eritrócitos , Regulação da Expressão Gênica/fisiologia , Humanos , Coelhos
17.
J Biol Chem ; 285(39): 30192-202, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20660596

RESUMO

Age-related macular degeneration (AMD) is the predominant cause of blindness in the industrialized world where destruction of the macula, i.e. the central region of the retina, results in loss of vision. AMD is preceded by the formation of deposits in the macula, which accumulate between the Bruch's membrane and the retinal pigment epithelium (RPE). These deposits are associated with complement-mediated inflammation and perturb retinal function. Recent genetic association studies have demonstrated that a common allele (402H) of the complement factor H (CFH) gene is a major risk factor for the development of AMD; CFH suppresses complement activation on host tissues where it is believed to bind via its interaction with polyanionic structures. We have shown previously that this coding change (Y402H; from a tyrosine to histidine residue) alters the binding of the CFH protein to sulfated polysaccharides. Here we demonstrate that the AMD-associated polymorphism profoundly affects CFH binding to sites within human macula. Notably, the AMD-associated 402H variant binds less well to heparan sulfate and dermatan sulfate glycosaminoglycans within Bruch's membrane when compared with the 402Y form; both allotypes exhibit a similar level of binding to the RPE. We propose that the impaired binding of the 402H variant to Bruch's membrane results in an overactivation of the complement pathway leading to local chronic inflammation and thus contributes directly to the development and/or progression of AMD. These studies therefore provide a putative disease mechanism and add weight to the genetic association studies that implicate the 402H allele as an important risk factor in AMD.


Assuntos
Lâmina Basilar da Corioide/metabolismo , Ativação do Complemento , Heparitina Sulfato/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Alelos , Substituição de Aminoácidos , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Heparitina Sulfato/genética , Humanos , Macula Lutea/metabolismo , Degeneração Macular/genética , Mutação de Sentido Incorreto , Ligação Proteica , Fatores de Risco
18.
Nat Mater ; 9(6): 485-90, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473287

RESUMO

Functionalization of nanomaterials for precise biomedical function is an emerging trend in nanotechnology. Carbon nanotubes are attractive as multifunctional carrier systems because payload can be encapsulated in internal space whilst outer surfaces can be chemically modified. Yet, despite potential as drug delivery systems and radiotracers, such filled-and-functionalized carbon nanotubes have not been previously investigated in vivo. Here we report covalent functionalization of radionuclide-filled single-walled carbon nanotubes and their use as radioprobes. Metal halides, including Na(125)I, were sealed inside single-walled carbon nanotubes to create high-density radioemitting crystals and then surfaces of these filled-sealed nanotubes were covalently modified with biantennary carbohydrates, improving dispersibility and biocompatibility. Intravenous administration of Na(125)I-filled glyco-single-walled carbon nanotubes in mice was tracked in vivo using single-photon emission computed tomography. Specific tissue accumulation (here lung) coupled with high in vivo stability prevented leakage of radionuclide to high-affinity organs (thyroid/stomach) or excretion, and resulted in ultrasensitive imaging and delivery of unprecedented radiodose density. Nanoencapsulation of iodide within single-walled carbon nanotubes enabled its biodistribution to be completely redirected from tissue with innate affinity (thyroid) to lung. Surface functionalization of (125)I-filled single-walled carbon nanotubes offers versatility towards modulation of biodistribution of these radioemitting crystals in a manner determined by the capsule that delivers them. We envisage that organ-specific therapeutics and diagnostics can be developed on the basis of the nanocapsule model described here.


Assuntos
Nanotecnologia/tendências , Nanotubos de Carbono/química , Acetilglucosamina/metabolismo , Metabolismo dos Carboidratos , Glicosilação , Humanos , Marcação por Isótopo/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Nanotecnologia/métodos , Oxirredução , Radioisótopos/metabolismo , Radioisótopos/farmacocinética , Estômago/diagnóstico por imagem , Glândula Tireoide/diagnóstico por imagem , Distribuição Tecidual , Tomografia Computadorizada por Raios X/métodos
19.
Blood ; 113(9): 1909-18, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19131551

RESUMO

Type 5 adenovirus (Ad5) is a human pathogen that has been widely developed for therapeutic uses, with only limited success to date. We report here the novel finding that human erythrocytes present Coxsackie virus-adenovirus receptor (CAR) providing an Ad5 sequestration mechanism that protects against systemic infection. Interestingly, erythrocytes from neither mice nor rhesus macaques present CAR. Excess Ad5 fiber protein or anti-CAR antibody inhibits the binding of Ad5 to human erythrocytes and cryo-electron microscopy shows attachment via the fiber protein of Ad5, leading to close juxtaposition with the erythrocyte membrane. Human, but not murine, erythrocytes also present complement receptor (CR1), which binds Ad5 in the presence of antibodies and complement. Transplantation of human erythrocytes into nonobese diabetic/severe combined immunodeficiency mice extends blood circulation of intravenous Ad5 but decreases its extravasation into human xenograft tumors. Ad5 also shows extended circulation in transgenic mice presenting CAR on their erythrocytes, although it clears rapidly in transgenic mice presenting erythrocyte CR1. Hepatic infection is inhibited in both transgenic models. Erythrocytes may therefore restrict Ad5 infection (natural and therapeutic) in humans, independent of antibody status, presenting a formidable challenge to Ad5 therapeutics. "Stealthing" of Ad5 using hydrophilic polymers may enable circumvention of these natural virus traps.


Assuntos
Adenovírus Humanos/imunologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Receptores de Complemento/imunologia , Receptores Virais/imunologia , Inativação de Vírus , Infecções por Adenovirus Humanos/sangue , Infecções por Adenovirus Humanos/imunologia , Adenovírus Humanos/metabolismo , Adenovírus Humanos/fisiologia , Animais , Apresentação de Antígeno/imunologia , Apresentação de Antígeno/fisiologia , Sítios de Ligação , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Eritrócitos/virologia , Feminino , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Modelos Biológicos , Células Tumorais Cultivadas
20.
Protein Expr Purif ; 80(2): 246-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21767648

RESUMO

Arylamine N-acetyltransferase from Mycobacterium tuberculosis (TBNAT) has been proposed as a drug target for latent tuberculosis treatment. The enzyme is essential for the survival of the mycobacterium in macrophages. However, TBNAT has been very difficult to generate as a soluble protein. In this work we describe production of soluble recombinant TBNAT at a reasonable yield achieved by subcloning the tbnat gene with a purification His-tag into the pVLT31 plasmid, and subsequent optimisation of the induction conditions. The expression system results in soluble protein optimised upon extended (60 h) low level isopropyl ß-D-1-thiogalactopyranoside level induction (100 µM) at a temperature of 15 °C. The level of TBNAT expression obtained in E. coli has been significantly improved from ∼2 mg to a final yield of up to 16 mg per litre of culture at a purity level suitable for structural studies. The molecular mass of 31310 Da was confirmed using mass spectroscopy and the oligomerisation state was determined. The stability of TBNAT in different buffer systems was investigated by thermal shift assays and sufficient protein is now available for the screening of chemical libraries for inhibitors.


Assuntos
Arilamina N-Acetiltransferase/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Mycobacterium tuberculosis/enzimologia , Proteínas Recombinantes/isolamento & purificação , Arilamina N-Acetiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Soluções Tampão , Cromatografia em Gel , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina/metabolismo , Isopropiltiogalactosídeo/farmacologia , Peso Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Solubilidade , Espectrometria de Massas por Ionização por Electrospray , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA