Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 148(5): 908-21, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22341456

RESUMO

The extent to which the three-dimensional organization of the genome contributes to chromosomal translocations is an important question in cancer genomics. We generated a high-resolution Hi-C spatial organization map of the G1-arrested mouse pro-B cell genome and used high-throughput genome-wide translocation sequencing to map translocations from target DNA double-strand breaks (DSBs) within it. RAG endonuclease-cleaved antigen-receptor loci are dominant translocation partners for target DSBs regardless of genomic position, reflecting high-frequency DSBs at these loci and their colocalization in a fraction of cells. To directly assess spatial proximity contributions, we normalized genomic DSBs via ionizing radiation. Under these conditions, translocations were highly enriched in cis along single chromosomes containing target DSBs and within other chromosomes and subchromosomal domains in a manner directly related to pre-existing spatial proximity. By combining two high-throughput genomic methods in a genetically tractable system, we provide a new lens for viewing cancer genomes.


Assuntos
Genoma , Neoplasias/genética , Translocação Genética , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fase G1 , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células Precursoras de Linfócitos B/citologia , Receptores de Antígenos/genética
2.
Mol Cell ; 63(3): 385-96, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397685

RESUMO

Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.


Assuntos
Cromossomos Fúngicos/enzimologia , DNA Helicases/metabolismo , DNA Fúngico/biossíntese , DNA Ribossômico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cromossomos Fúngicos/genética , DNA Helicases/genética , DNA Polimerase I/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Dosagem de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
Nature ; 510(7504): 293-297, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24805245

RESUMO

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a ß-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.


Assuntos
DNA Helicases/metabolismo , DNA Polimerase I/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/ultraestrutura , DNA Polimerase I/química , DNA Polimerase I/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
4.
Angew Chem Int Ed Engl ; 56(42): 12866-12872, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28815832

RESUMO

The exploitation of synthetic lethality by small-molecule targeting of pathways that maintain genomic stability is an attractive chemotherapeutic approach. The Ctf4/AND-1 protein hub, which links DNA replication, repair, and chromosome segregation, represents a novel target for the synthetic lethality approach. Herein, we report the design, optimization, and validation of double-click stapled peptides encoding the Ctf4-interacting peptide (CIP) of the replicative helicase subunit Sld5. By screening stapling positions in the Sld5 CIP, we identified an unorthodox i,i+6 stapled peptide with improved, submicromolar binding to Ctf4. The mode of interaction with Ctf4 was confirmed by a crystal structure of the stapled Sld5 peptide bound to Ctf4. The stapled Sld5 peptide was able to displace the Ctf4 partner DNA polymerase α from the replisome in yeast extracts. Our study provides proof-of-principle evidence for the development of small-molecule inhibitors of the human CTF4 orthologue AND-1.


Assuntos
Peptídeos/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA Polimerase I/química , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Compostos de Diazônio/química , Polarização de Fluorescência , Instabilidade Genômica , Humanos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(4): 1327-32, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297211

RESUMO

Small, glutamine-rich, tetratricopeptide repeat protein 2 (Sgt2) is the first known port of call for many newly synthesized tail-anchored (TA) proteins released from the ribosome and destined for the GET (Guided Entry of TA proteins) pathway. This leads them to the residential membrane of the endoplasmic reticulum via an alternative to the cotranslational, signal recognition particle-dependent mechanism that their topology denies them. In yeast, the first stage of the GET pathway involves Sgt2 passing TA proteins on to the Get4/Get5 complex through a direct interaction between the N-terminal (NT) domain of Sgt2 and the ubiquitin-like (UBL) domain of Get5. Here we characterize this interaction at a molecular level by solving both a solution structure of Sgt2_NT, which adopts a unique helical fold, and a crystal structure of the Get5_UBL. Furthermore, using reciprocal chemical shift perturbation data and experimental restraints, we solve a structure of the Sgt2_NT/Get5_UBL complex, validate it via site-directed mutagenesis, and empirically determine its stoichiometry using relaxation experiments and isothermal titration calorimetry. Taken together, these data provide detailed structural information about the interaction between two key players in the coordinated delivery of TA protein substrates into the GET pathway.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Sequência de Aminoácidos , Fenômenos Biofísicos , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Ubiquitinas/química , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(19): 7757-62, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518891

RESUMO

The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.


Assuntos
GMP Cíclico/análogos & derivados , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Sítios de Ligação , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Cinética , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sistemas do Segundo Mensageiro
7.
Open Biol ; 7(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29167311

RESUMO

A dynamic multi-protein assembly known as the replisome is responsible for DNA synthesis in eukaryotic cells. In yeast, the hub protein Ctf4 bridges DNA helicase and DNA polymerase and recruits factors with roles in metabolic processes coupled to DNA replication. An important question in DNA replication is the extent to which the molecular architecture of the replisome is conserved between yeast and higher eukaryotes. Here, we describe the biochemical basis for the interaction of the human CTF4-orthologue AND-1 with DNA polymerase α (Pol α)/primase, the replicative polymerase that initiates DNA synthesis. AND-1 has maintained the trimeric structure of yeast Ctf4, driven by its conserved SepB domain. However, the primary interaction of AND-1 with Pol α/primase is mediated by its C-terminal HMG box, unique to mammalian AND-1, which binds the B subunit, at the same site targeted by the SV40 T-antigen for viral replication. In addition, we report a novel DNA-binding activity in AND-1, which might promote the correct positioning of Pol α/primase on the lagging-strand template at the replication fork. Our findings provide a biochemical basis for the specific interaction between two critical components of the human replisome, and indicate that important principles of replisome architecture have changed significantly in evolution.


Assuntos
DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Domínios HMG-Box , Sítios de Ligação , Biologia Computacional , Humanos , Modelos Moleculares , Ligação Proteica
8.
Nat Commun ; 7: 11638, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189187

RESUMO

Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication.


Assuntos
Proteínas de Ciclo Celular/química , Replicação do DNA , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , DNA Helicases/metabolismo , Exodesoxirribonucleases/química , Feminino , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Conformação Proteica , Xenopus laevis
9.
PLoS One ; 9(11): e113281, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415308

RESUMO

BACKGROUND: The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. METHODOLOGY AND PRINCIPAL FINDINGS: SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes. SIGNIFICANCE: This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex.


Assuntos
Proteínas de Transporte/química , Chaperonas Moleculares/química , Multimerização Proteica , Estrutura Terciária de Proteína , Ubiquitinas/química , Animais , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/metabolismo , Biologia Computacional/métodos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Software , Soluções , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
10.
Biomol NMR Assign ; 7(2): 271-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23001946

RESUMO

The first stage of the GET (guided entry of tail-anchored proteins) mechanism for tail-anchored (TA) membrane protein insertion is thought to occur when Sgt2 (small, glutamine-rich, tetratricopeptide repeat-containing protein 2) binds TA proteins upon their release from the ribosome. It sorts them and passes the majority over to a complex of Get5 and Get4 for transmission along the GET pathway and delivery to their membrane destination. Sgt2 is a 38 kDa protein consisting of three domains. The N-terminal domain effects tight dimerisation of the protein and is also the site for binding with the ubiquitin-like (UBL) domain of Get5. Here we have expressed and purified uniformly-(15)N/(13)C-labelled N-terminal Sgt2 (Sgt2_NT) and its binding partner, Get5 UBL domain (Get5_UBL) and assigned the backbone and side-chain resonances as a basis for structure solution of the individual components and, ultimately, the complex. This will provide detailed molecular insight into the early stages of the GET pathway.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Prótons , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Sequência de Aminoácidos , Isótopos de Carbono , Dados de Sequência Molecular , Isótopos de Nitrogênio , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA