RESUMO
Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.
Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/fisiologia , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Animais , Morte Celular , Sobrevivência Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Células HEK293 , Células HeLa , Humanos , Interferons/metabolismo , Mamíferos/genética , Camundongos Endogâmicos C57BL , RNA/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismoRESUMO
As part of their life cycle some single-stranded RNA viruses remodel host cytoplasmic membranes into specialized organelles. In this issue, Hsu et al. (2010) demonstrate how the viruses selectively co-opt host machinery to make this unique organelle, which has a lipid composition favorable to viral replication.
RESUMO
Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer caused by a dominant recurrent fusion of the heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). Current therapies such as chemotherapy and radiation have limited efficacy, and new treatment options are needed urgently. We have previously shown that FLC tumors are dependent on the fusion kinase DNAJB1::PRKACA, making the oncokinase an ideal drug target. mRNA degrading modalities such as antisense oligonucleotides or small interfering RNAs (siRNAs) provide an opportunity to specifically target the fusion junction. Here, we identify a potent and specific siRNA that inhibits DNAJB1::PRKACA expression. We found expression of the asialoglycoprotein receptor in FLC to be maintained at sufficient levels to effectively deliver siRNA conjugated to the GalNAc ligand. We observe productive uptake and siRNA activity in FLC patient-derived xenografts (PDX) models in vitro and in vivo. Knockdown of DNAJB1::PRKACA results in durable growth inhibition of FLC PDX in vivo with no detectable toxicities. Our results suggest that this approach could be a treatment option for FLC patients.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , RNA de Cadeia Dupla , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismoRESUMO
Post-Golgi vesicles target and deliver most biosynthetic cargoes to the cell surface. However, the molecules and mechanisms involved in fusion of these vesicles are not well understood. We have employed a system to simultaneously monitor release of luminal and membrane biosynthetic cargoes from individual post-Golgi vesicles. Exocytosis of these vesicles is not calcium triggered. Release of luminal cargo can be accompanied by complete, partial, or no release of membrane cargo. Partial and no release of membrane cargo of a fusing vesicle are fates associated with kiss-and-run exocytosis, and we find that these are the predominant mode of post-Golgi vesicle exocytosis. Partial cargo release by post-Golgi vesicles occurs because of premature closure of the fusion pore and is modulated by the activity of clathrin, actin, and dynamin. Our results demonstrate that these components of the endocytic machinery modulate the nature and extent of biosynthetic cargo delivery by post-Golgi vesicles at the cell membrane.
Assuntos
Exocitose , Vesículas Transportadoras/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Complexo de Golgi/metabolismo , Humanos , Microscopia de Fluorescência , Mutação , Proteína 1A de Ligação a Tacrolimo/genéticaRESUMO
AAA+ (ATPases Associated with diverse cellular Activities) proteases unfold substrate proteins by pulling the substrate polypeptide through a narrow pore. To overcome the barrier to unfolding, substrates may require extended association with the ATPase. Failed unfolding attempts can lead to a slip of grip, which may result in substrate dissociation, but how substrate sequence affects slippage is unresolved. Here, we measured single molecule dwell time using total internal reflection fluorescence microscopy, scoring time-dependent dissociation of engaged substrates from bacterial AAA+ ATPase unfoldase/translocase ClpX. Substrates comprising a stable domain resistant to unfolding and a C-terminal unstructured tail, tagged with a degron for initiating translocase insertion, were used to determine dwell time in relation to tail length and composition. We found greater tail length promoted substrate retention during futile unfolding. Additionally, we tested two tail compositions known to frustrate unfolding. A poly-glycine tract (polyG) promoted release, but only when adjacent to the folded domain, whereas glycine-alanine repeats (GAr) did not promote release. A high complexity motif containing polar and charged residues also promoted release. We further investigated the impact of these and related motifs on substrate degradation rates and ATP consumption, using the unfoldase-protease complex ClpXP. Here, substrate domain stability modulates the effects of substrate tail sequences. polyG and GAr are both inhibitory for unfolding, but act in different ways. GAr motifs only negatively affected degradation of highly stable substrates, which is accompanied by reduced ClpXP ATPase activity. Together, our results specify substrate characteristics that affect unfolding and degradation by ClpXP.
Assuntos
ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases , Endopeptidase Clp , Imagem Individual de Molécula , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/metabolismo , Glicina , Chaperonas Moleculares/metabolismo , Especificidade por SubstratoRESUMO
When the J-domain of the heat shock protein DnaJB1 is fused to the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), replacing exon 1, this fusion protein, J-C subunit (J-C), becomes the driver of fibrolamellar hepatocellular carcinoma (FL-HCC). Here, we use cryo-electron microscopy (cryo-EM) to characterize J-C bound to RIIß, the major PKA regulatory (R) subunit in liver, thus reporting the first cryo-EM structure of any PKA holoenzyme. We report several differences in both structure and dynamics that could not be captured by the conventional crystallography approaches used to obtain prior structures. Most striking is the asymmetry caused by the absence of the second cyclic nucleotide binding (CNB) domain and the J-domain in one of the RIIß:J-C protomers. Using molecular dynamics (MD) simulations, we discovered that this asymmetry is already present in the wild-type (WT) RIIß2C2 but had been masked in the previous crystal structure. This asymmetry may link to the intrinsic allosteric regulation of all PKA holoenzymes and could also explain why most disease mutations in PKA regulatory subunits are dominant negative. The cryo-EM structure, combined with small-angle X-ray scattering (SAXS), also allowed us to predict the general position of the Dimerization/Docking (D/D) domain, which is essential for localization and interacting with membrane-anchored A-Kinase-Anchoring Proteins (AKAPs). This position provides a multivalent mechanism for interaction of the RIIß holoenzyme with membranes and would be perturbed in the oncogenic fusion protein. The J-domain also alters several biochemical properties of the RIIß holoenzyme: It is easier to activate with cAMP, and the cooperativity is reduced. These results provide new insights into how the finely tuned allosteric PKA signaling network is disrupted by the oncogenic J-C subunit, ultimately leading to the development of FL-HCC.
Assuntos
Carcinoma Hepatocelular/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Carcinoma Hepatocelular/metabolismo , Microscopia Crioeletrônica/métodos , AMP Cíclico/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/ultraestrutura , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/ultraestrutura , Holoenzimas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Espalhamento a Baixo Ângulo , Difração de Raios X/métodosRESUMO
It is a subject of intense debate whether proteins are transported by vesicles through the membranous stacks of the Golgi or whether the stacks mature, carrying the cargo along. In this issue, Patterson et al. (2008) present evidence for a third model in which the Golgi stacks are a continuous structure and proteins rapidly equilibrate between the layers.
Assuntos
Complexo de Golgi/metabolismo , Transporte Proteico , Animais , Humanos , Modelos BiológicosRESUMO
Retroviruses incorporate specific host cell RNAs into virions. In particular, the host noncoding 7SL RNA is highly abundant in all examined retroviruses compared with its cellular levels or relative to common mRNAs such as actin. Using live cell imaging techniques, we have determined that the 7SL RNA does not arrive with the HIV-1 RNA genome. Instead, it is recruited contemporaneously with assembly of the protein HIV-1 Gag at the plasma membrane. Further, we demonstrate that complexes of 7SL RNA and Gag can be immunoprecipitated from both cytosolic and plasma membrane fractions. This indicates that 7SL RNAs likely interact with Gag prior to high-order Gag multimerization at the plasma membrane. Thus, the interactions between Gag and the host RNA 7SL occur independent of the interactions between Gag and the host endosomal sorting complex required for transport (ESCRT) proteins, which are recruited temporarily at late stages of assembly. The interactions of 7SL and Gag are also independent of interactions of Gag and the HIV-1 genome which are seen on the plasma membrane prior to assembly of Gag.
Assuntos
HIV-1/fisiologia , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Montagem de Vírus , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Humanos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismoRESUMO
A segmental deletion resulting in DNAJB1-PRKACA gene fusion is now recognized as the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. Here we implement CRISPR-Cas9 genome editing and transposon-mediated somatic gene transfer to demonstrate that expression of either the endogenous fusion protein or a chimeric cDNA leads to the formation of indolent liver tumors in mice that closely resemble human FL-HCC. Notably, overexpression of the wild-type PRKACA was unable to fully recapitulate the oncogenic activity of DNAJB1-PRKACA, implying that FL-HCC does not simply result from enhanced PRKACA expression. Tumorigenesis was significantly enhanced by genetic activation of ß-catenin, an observation supported by evidence of recurrent Wnt pathway mutations in human FL-HCC, as well as treatment with the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes tissue injury, inflammation, and fibrosis. Our study validates the DNAJB1-PRKACA fusion kinase as an oncogenic driver and candidate drug target for FL-HCC, and establishes a practical model for preclinical studies to identify strategies to treat this disease.
Assuntos
Carcinoma Hepatocelular/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Regeneração Hepática/genética , Fígado/fisiologia , Proteínas de Fusão Oncogênica/genética , beta Catenina/genética , Adulto , Animais , Sequência de Bases , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Cromossomos Humanos Par 19/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/toxicidade , Deleção de Sequência/genética , Adulto JovemRESUMO
Apolipoprotein E (ApoE), a component of very-low-density and high-density lipoproteins, participates in many aspects of lipid transport in the bloodstream. Underscoring its important functions, ApoE isoforms have been associated with metabolic and circulatory disease. ApoE is also incorporated into hepatitis C virus (HCV) particles, and promotes their production and infectivity. Live cell imaging analysis of ApoE behavior during secretion from producing cells thus has the potential to reveal important details regarding lipoprotein and HCV particle biogenesis and secretion from cells. However, this approach requires expression of fluorescently tagged ApoE constructs that need to faithfully reproduce known ApoE behaviors. Herein, we evaluate the usefulness of using an ApoE-GFP fusion protein in studying hepatocyte-derived, ApoE-containing lipoproteins and HCV particles. We show that while ApoE-GFP alone is not sufficient to support infectious HCV production, it nonetheless colocalizes intracellularly and associates with secreted untagged lipoprotein components. Furthermore, its rate of secretion from hepatic cells is indistinguishable from that of untagged ApoE. ApoE-GFP thus represents a useful marker for ApoE-containing hepatic lipoproteins.
Assuntos
Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Liberação de Vírus/fisiologia , Linhagem Celular , Células HEK293 , Células HeLa , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Fígado/virologia , Montagem de Vírus/fisiologiaRESUMO
Fibrolamellar carcinomas are characterized by activation of protein kinase A, a kinase composed of catalytic and regulatory subunits. PRKACA encodes a catalytic subunit of protein kinase A, and almost all fibrolamellar carcinomas have a heterozygous 400-kb deletion that leads to the fusion of DNAJB1 and PRKACA. The resulting DNAJB1-PRKACA fusion transcript is believed to activate protein kinase A by dysregulation of the catalytic portion of the protein. In contrast, PRKAR1A encodes one of the regulatory subunits of protein kinase A. We hypothesized that loss of function of this regulatory unit could also lead to protein kinase A activation and thus to fibrolamellar carcinoma. Because PRKAR1A mutations underlie the Carney complex, we searched for liver tumors in individuals with the Carney complex. We identified 3 individuals with fibrolamellar carcinomas and a personal history of the Carney complex. All three tumors displayed the typical morphology of fibrolamellar carcinoma and were positive for arginase, cytokeratin 7, and cluster of differentiation 68. Fluorescence in situ hybridization was negative for PRKACA rearrangements. However, PRKAR1A sequencing identified pathogenic mutations in two of two cases with successful sequencing. In addition, all three cases were negative for PRKAR1A protein expression, consistent with inactivation of this key regulatory unit of protein kinase A. We also identified one additional fibrolamellar carcinoma in an individual without a documented history of the Carney complex who was negative for PRKACA rearrangements but had loss of PRKAR1A protein expression as well as PRKAR1A mutations. CONCLUSION: Fibrolamellar carcinoma can be part of the Carney complex; in this setting, fibrolamellar carcinomas have inactivating PRKAR1A mutations instead of the DNAJB1-PRKACA fusion gene found in sporadic fibrolamellar carcinomas, providing an alternate means for activation of protein kinase A. (Hepatology 2017).
Assuntos
Carcinoma Hepatocelular/genética , Complexo de Carney/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Neoplasias Hepáticas/genética , Proteínas de Fusão Oncogênica/genética , Adolescente , Idoso , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Doenças Raras , Estudos de AmostragemRESUMO
Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions.
Assuntos
Genoma Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/virologia , Citoplasma/virologia , Células HeLa , Humanos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , RNA Viral/genética , Replicação Viral/genéticaRESUMO
Fibrolamellar hepatocellular carcinoma (FLC) is a rare form of primary liver cancer that affects adolescents and young adults without underlying liver disease. Surgery remains the mainstay of therapy; however, most patients are either not surgical candidates or suffer from recurrence. There is no approved systemic therapy and the overall survival remains poor. Historically classified as a subtype of hepatocellular carcinoma (HCC), FLC has a unique clinical, histological, and molecular presentation. At the genomic level, FLC contains a single 400kB deletion in chromosome 19, leading to a functional DNAJB1-PRKACA fusion protein. In this review, we detail the recent advances in our understanding of the molecular underpinnings of FLC and outline the current knowledge gaps.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromossomos Humanos Par 19 , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Fusão Gênica , Predisposição Genética para Doença , Proteínas de Choque Térmico HSP40/genética , Humanos , Terapia de Alvo Molecular , Recidiva Local de Neoplasia , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do TratamentoRESUMO
Fibrolamellar hepatocellular carcinoma (FLHCC) is a rare liver malignancy in adolescents and young adults. Surgery is the mainstay of therapy for primary and metastatic disease. Most patients relapse, with development of both local and distant metastases. Brain metastases from solid tumors are rare in the pediatric and young adult population. Here, we document three patients with brain metastases from FLHCC, confirmed by histology and molecular characterization of the chimeric fusion DNAJB1-PRKACA, each necessitating neurosurgical intervention. These observations highlight the ability of FLHCC to metastasize to the brain and suggest the need for surveillance neuroimaging for patients with advanced-stage disease.
Assuntos
Neoplasias Encefálicas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neuroimagem , Procedimentos Neurocirúrgicos , Adolescente , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirurgia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Feminino , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Metástase Neoplásica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismoRESUMO
Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a deletion of â¼ 400 kb in chromosome 19, resulting in a fusion of the genes for the heat shock protein, DNAJ (Hsp40) homolog, subfamily B, member 1, DNAJB1, and the catalytic subunit of protein kinase A, PRKACA. The resulting chimeric transcript produces a fusion protein that retains kinase activity. No other recurrent genomic alterations have been identified. Here we characterize the molecular pathogenesis of FLHCC with transcriptome sequencing (RNA sequencing). Differential expression (tumor vs. adjacent normal tissue) was detected for more than 3,500 genes (log2 fold change ≥ 1, false discovery rate ≤ 0.01), many of which were distinct from those found in hepatocellular carcinoma. Expression of several known oncogenes, such as ErbB2 and Aurora Kinase A, was increased in tumor samples. These and other dysregulated genes may serve as potential targets for therapeutic intervention.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Humanos , Reação em Cadeia da PolimeraseRESUMO
HIV-1 virions assemble at the plasma membrane of mammalian cells and recruit the endosomal sorting complex required for transport (ESCRT) machinery to enable particle release. However, little is known about the temporal and spatial organization of ESCRT protein recruitment. Using multiple-color live-cell total internal reflection fluorescence microscopy, we observed that the ESCRT-I protein Tsg101 is recruited together with Gag to the sites of HIV-1 assembly, whereas later-acting ESCRT proteins (Chmp4b and Vps4A) are recruited sequentially, once Gag assembly is completed. Chmp4b, a protein that is required to mediate particle scission, is recruited to HIV-1 assembly sites â¼10 s before the ATPase Vps4A. Using two-color superresolution imaging, we observed that the ESCRT machinery (Tsg101, Alix, and Chmp4b/c proteins) is positioned at the periphery of the nascent virions, with the Tsg101 assemblages positioned closer to the Gag assemblages than Alix, Chmp4b, or Chmp4c. These results are consistent with the notion that the ESCRT machinery is recruited transiently to the neck of the assembling particle and is thus present at the appropriate time and place to mediate fission between the nascent virus and the plasma membrane.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/fisiologia , Liberação de Vírus , ATPases Associadas a Diversas Atividades Celulares , Células HeLa , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Montagem de VírusRESUMO
Total internal reflection fluorescence microscopy (TIRFM) is becoming an increasingly common methodology to narrow the illumination excitation thickness to study cellular process such as exocytosis, endocytosis, and membrane dynamics. It is also frequently used as a method to improve signal/noise in other techniques such as in vitro single-molecule imaging, stochastic optical reconstruction microscopy/photoactivated localization microscopy imaging, and fluorescence resonance energy transfer imaging. The unique illumination geometry of TIRFM also enables a distinct method to create an excitation field for selectively exciting fluorophores that are aligned either parallel or perpendicular to the optical axis. This selectivity has been used to study orientation of cell membranes and cellular proteins. Unfortunately, the coherent nature of laser light, the typical excitation source in TIRFM, often creates spatial interference fringes across the illuminated area. These fringes are particularly problematic when imaging large cellular areas or when accurate quantification is necessary. Methods have been developed to minimize these fringes by modulating the TIRFM field during a frame capture period; however, these approaches eliminate the possibility to simultaneously excite with a specific polarization. A new, to our knowledge, technique is presented, which compensates for spatial fringes while simultaneously permitting rapid image acquisition of both parallel and perpendicular excitation directions in ~25 ms. In addition, a back reflection detection scheme was developed that enables quick and accurate alignment of the excitation laser. The detector also facilitates focus drift compensation, a common problem in TIRFM due to the narrow excitation depth, particularly when imaging over long time courses or when using a perfusion flow chamber. The capabilities of this instrument were demonstrated by imaging membrane orientation using DiO on live cells and on lipid bilayers that were supported on a glass slide (supported lipid bilayer). The use of the approach to biological problems was illustrated by examining the temporal and spatial dynamics of exocytic vesicles.
Assuntos
Microscopia de Fluorescência/métodos , Membrana Celular/metabolismo , Sobrevivência Celular , Polarização de Fluorescência , Células HeLa , Humanos , Bicamadas Lipídicas/metabolismo , Fatores de TempoRESUMO
The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. In single-cell eukaryotes, such as Saccharomyces cerevisiae, the gene encoding clathrin is not an essential gene, raising the question of whether clathrin conveys specific advantages for multicellularity. Furthermore, in contrast to mammalian cells, endocytosis in S. cerevisiae is not dependent on either clathrin or adaptor protein 2 (AP2), an endocytic adaptor molecule. In this study, we investigated the requirement for components of clathrin-mediated endocytosis (CME) in another unicellular organism, the amoeba Dictyostelium. We identified a heterotetrameric AP2 complex in Dictyostelium that is similar to that which is found in higher eukaryotes. By simultaneously imaging fluorescently tagged clathrin and AP2, we found that, similar to higher eukaryotes, these proteins colocalized to membrane puncta that move into the cell together. In addition, the contractile vacuole marker protein, dajumin-green fluorescent protein (GFP), is trafficked via the cell membrane and internalized by CME in a clathrin-dependent, AP2-independent mechanism. This pathway is distinct from other endocytic mechanisms in Dictyostelium. Our finding that CME is required for the internalization of contractile vacuole proteins from the cell membrane explains the contractile vacuole biogenesis defect in Dictyostelium cells lacking clathrin. Our results also suggest that the machinery for CME and its role in organelle maintenance appeared early during eukaryotic evolution. We hypothesize that dependence of endocytosis on specific components of the CME pathway evolved later, as demonstrated by internalization independent of AP2 function.
Assuntos
Clatrina/metabolismo , Dictyostelium/citologia , Dictyostelium/metabolismo , Endocitose/fisiologia , Complexo 2 de Proteínas Adaptadoras/metabolismo , Biogênese de Organelas , Saccharomyces cerevisiaeRESUMO
Observations of individual virions in live cells have led to the characterization of their attachment, entry and intracellular transport. However, the assembly of individual virions has never been observed in real time. Insights into this process have come primarily from biochemical analyses of populations of virions or from microscopic studies of fixed infected cells. Thus, some assembly properties, such as kinetics and location, are either unknown or controversial. Here we describe quantitatively the genesis of individual virions in real time, from initiation of assembly to budding and release. We studied fluorescently tagged derivatives of Gag, the major structural component of HIV-1-which is sufficient to drive the assembly of virus-like particles-with the use of fluorescence resonance energy transfer, fluorescence recovery after photobleaching and total-internal-reflection fluorescent microscopy in living cells. Virions appeared individually at the plasma membrane, their assembly rate accelerated as Gag protein accumulated in cells, and typically 5-6 min was required to complete the assembly of a single virion. These approaches allow a previously unobserved view of the genesis of individual virions and the determination of parameters of viral assembly that are inaccessible with conventional techniques.