Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(9): 097603, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202901

RESUMO

Model materials are precious test cases for elementary theories and provide building blocks for the understanding of more complex cases. Here, we describe the lattice dynamics of the structural phase transition in francisite Cu_{3}Bi(SeO_{3})_{2}O_{2}Cl at 115 K and show that it provides a rare archetype of a transition driven by a soft antipolar phonon mode. In the high-symmetry phase at high temperatures, the soft mode is found at (0,0,0.5) at the Brillouin zone boundary and is measured by inelastic x-ray scattering and thermal diffuse scattering. In the low-symmetry phase, this soft-mode is folded back onto the center of the Brillouin zone as a result of the doubling of the unit cell, and appears as a fully symmetric mode that can be tracked by Raman spectroscopy. On both sides of the transition, the mode energy squared follows a linear behavior over a large temperature range. First-principles calculations reveal that, surprisingly, the flat phonon band calculated for the high-symmetry phase seems incompatible with the displacive character found experimentally. We discuss this unusual behavior in the context of an ideal Kittel model of an antiferroelectric transition.

2.
Phys Rev Lett ; 123(2): 027204, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386519

RESUMO

Combining inelastic neutron scattering and numerical simulations, we study the quasi-one-dimensional Ising anisotropic quantum antiferromagnet BaCo_{2}V_{2}O_{8} in a longitudinal magnetic field. This material shows a quantum phase transition from a Néel ordered phase at zero field to a longitudinal incommensurate spin density wave at a critical magnetic field of 3.8 T. Concomitantly, the excitation gap almost closes and a fundamental reconfiguration of the spin dynamics occurs. These experimental results are well described by the universal Tomonaga-Luttinger liquid theory developed for interacting spinless fermions in one dimension. We especially observe the rise of mainly longitudinal excitations, a hallmark of the unconventional low-field regime in Ising-like quantum antiferromagnetic chains.

3.
Chemistry ; 24(2): 388-399, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28858419

RESUMO

The characterization of the crystal structure, phase transitions, magnetic structure and dielectric properties has been carried out on [CH3 NH3 ][Co(COOH)3 ] (1) perovskite-like metal-organic compound through variable-temperature single-crystal and powder neutron and X-ray diffraction and relative permittivity measurements. The paraelectric to antiferroelectric-like phase transition observed at around 90 K is triggered by a structural phase transition; the structural studies show a change from Pnma space group at RT (1A) to P21 /n space group at low temperature (1B). This phase transition involves the occurrence of small distortions in the framework and counterions. Neutron diffraction studies have shown a magnetic order showing spontaneous magnetization below 15 K, due to the occurrence of a non-collinear antiferromagnetic structure with a weak ferromagnetic component, mainly due to the single-ion anisotropy of the CoII ions.

4.
J Am Chem Soc ; 134(48): 19772-81, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23130914

RESUMO

Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA