Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7754): 53-58, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043730

RESUMO

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.

2.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089728

RESUMO

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

3.
Phys Rev Lett ; 126(2): 022501, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512176

RESUMO

We predict the limits of existence of atomic nuclei, the proton and neutron drip lines, from the light through medium-mass regions. Starting from a chiral two- and three-nucleon interaction with good saturation properties, we use the valence-space in-medium similarity renormalization group to calculate ground-state and separation energies from helium to iron, nearly 700 isotopes in total. We use the available experimental data to quantify the theoretical uncertainties for our ab initio calculations towards the drip lines. Where the drip lines are known experimentally, our predictions are consistent within the estimated uncertainty. For the neutron-rich sodium to chromium isotopes, we provide predictions to be tested at rare-isotope beam facilities.

4.
Phys Rev Lett ; 124(9): 092502, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202869

RESUMO

We probe the N=82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of ^{132}Cd offers the first value of the N=82, two-neutron shell gap below Z=50 and confirms the phenomenon of mutually enhanced magicity at ^{132}Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in ^{129}Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.

5.
Phys Rev Lett ; 124(13): 132502, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302185

RESUMO

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of ^{68}Ni.

6.
Nature ; 498(7454): 346-9, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23783629

RESUMO

The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes (40)Ca and (48)Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of (51)Ca and (52)Ca have been validated by direct measurements, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes (53)Ca and (54)Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our theoretical calculations. These results increase our understanding of neutron-rich matter and pin down the subtle components of nuclear forces that are at the forefront of theoretical developments constrained by quantum chromodynamics.

7.
Phys Rev Lett ; 120(15): 152503, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756897

RESUMO

We link the structure of nuclei around ^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50), to nucleon-nucleon (NN) and three-nucleon (NNN) forces constrained by data of few-nucleon systems. Our results indicate that ^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of ^{101}Sn based on three-particle-two-hole excitations of ^{100}Sn, and we find that one interaction accurately reproduces the small splitting between the lowest J^{π}=7/2^{+} and 5/2^{+} states.

8.
Phys Rev Lett ; 120(23): 232501, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932682

RESUMO

The neutron-rich isotopes ^{58-63}Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron midshell region, which is a gateway to the second island of inversion around N=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the ab initio in-medium similarity renormalization group, the first such results for open-shell chromium isotopes.

9.
Phys Rev Lett ; 120(6): 062503, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481255

RESUMO

A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

10.
Phys Rev Lett ; 113(8): 082501, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192091

RESUMO

Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of (20,21)Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by 6 orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of (21)Mg is in good agreement but that the mass of (20)Mg deviates by 3 σ. These measurements reduce the uncertainties in the masses of (20,21)Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin nonconserving universal sd USDA and USDB Hamiltonians or isospin nonconserving interactions based on chiral two- and three-nucleon forces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA