Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122979

RESUMO

Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds.IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Vírus/classificação , Análise por Conglomerados , Conformação Proteica , Vírus/genética , Vírus/ultraestrutura
2.
Front Microbiol ; 5: 342, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071753

RESUMO

Killing is perhaps the most definite form of communication possible. Microbes such as yeasts and gut bacteria have been shown to exhibit killer phenotypes. The killer strains are able to kill other microbes occupying the same ecological niche, and do so with impunity. It would therefore be expected that, wherever a killer phenotype has arisen, all members of the population would soon be killers or dead. Surprisingly, (1) one can find both killer and sensitive strains in coexistence, both in the wild and in in vitro experiments, and (2) the absolute fitness cost of the killer phenotype often seems to be very small. We present an explicit model of such coexistence in a fragmented or discrete environment. A killer strain may kill all sensitive cells in one patch (one piece of rotting fruit, one cave or one human gut, for example), allowing sensitives to exist only in the absence of killer strains on the same patch. In our model, populations spread easily between patches, but in a stochastic manner: one can imagine spores borne by the wind over a field of untended apple trees, or enteric disease transmission in a region in which travel is effectively unrestricted. What we show is that coexistence is not only possible, but that it is possible even if the absolute fitness advantage of the sensitive strain over the killer strain is arbitrarily small. We do this by performing a specifically targeted mathematical analysis on our model, rather than via simulations. Our model does not assume large population densities, and may thus be useful in the context of understanding the ecology of extreme environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA