Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Annu Rev Biochem ; 86: 845-872, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301742

RESUMO

Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and


Assuntos
Optogenética/métodos , Proteínas de Plantas/química , Retinoides/química , Rodopsinas Microbianas/química , Rodopsinas Sensoriais/química , Clorófitas/classificação , Clorófitas/genética , Clorófitas/metabolismo , Evolução Molecular , Expressão Gênica , Luz , Transdução de Sinal Luminoso , Potenciais da Membrana/fisiologia , Modelos Moleculares , Processos Fotoquímicos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Retinoides/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(21): e2301521120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186849

RESUMO

Channelrhodopsins with red-shifted absorption, rare in nature, are highly desired for optogenetics because light of longer wavelengths more deeply penetrates biological tissue. RubyACRs (Anion ChannelRhodopsins), a group of four closely related anion-conducting channelrhodopsins from thraustochytrid protists, are the most red-shifted channelrhodopsins known with absorption maxima up to 610 nm. Their photocurrents are large, as is typical of blue- and green-absorbing ACRs, but they rapidly decrease during continuous illumination (desensitization) and extremely slowly recover in the dark. Here, we show that long-lasting desensitization of RubyACRs results from photochemistry not observed in any previously studied channelrhodopsins. Absorption of a second photon by a photocycle intermediate with maximal absorption at 640 nm (P640) renders RubyACR bistable (i.e., very slowly interconvertible between two spectrally distinct forms). The photocycle of this bistable form involves long-lived nonconducting states (Llong and Mlong), formation of which is the reason for long-lasting desensitization of RubyACR photocurrents. Both Llong and Mlong are photoactive and convert to the initial unphotolyzed state upon blue or ultraviolet (UV) illumination, respectively. We show that desensitization of RubyACRs can be reduced or even eliminated by using ns laser flashes, trains of short light pulses instead of continuous illumination to avoid formation of Llong and Mlong, or by application of pulses of blue light between pulses of red light to photoconvert Llong to the initial unphotolyzed state.


Assuntos
Luz , Fótons , Channelrhodopsins , Ânions/metabolismo , Fotoquímica
3.
Biochemistry (Mosc) ; 88(10): 1555-1570, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105024

RESUMO

Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.


Assuntos
Optogenética , Fototaxia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Luz , Transporte de Íons
4.
Proc Natl Acad Sci U S A ; 117(37): 22833-22840, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32873643

RESUMO

Channelrhodopsins are light-gated ion channels widely used to control neuronal firing with light (optogenetics). We report two previously unknown families of anion channelrhodopsins (ACRs), one from the heterotrophic protists labyrinthulea and the other from haptophyte algae. Four closely related labyrinthulea ACRs, named RubyACRs here, exhibit a unique retinal-binding pocket that creates spectral sensitivities with maxima at 590 to 610 nm, the most red-shifted channelrhodopsins known, long-sought for optogenetics, and more broadly the most red-shifted microbial rhodopsins thus far reported. We identified three spectral tuning residues critical for the red-shifted absorption. Photocurrents recorded from the RubyACR from Aurantiochytrium limacinum (designated AlACR1) under single-turnover excitation exhibited biphasic decay, the rate of which was only weakly voltage dependent, in contrast to that in previously characterized cryptophyte ACRs, indicating differences in channel gating mechanisms between the two ACR families. Moreover, in A. limacinum we identified three ACRs with absorption maxima at 485, 545, and 590 nm, indicating color-sensitive photosensing with blue, green, and red spectral variation of ACRs within individual species of the labyrinthulea family. We also report functional energy transfer from a cytoplasmic fluorescent protein domain to the retinal chromophore bound within RubyACRs.


Assuntos
Channelrhodopsins/química , Ativação do Canal Iônico/fisiologia , Ânions/metabolismo , Criptófitas/genética , Células HEK293 , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Luz , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Optogenética/métodos , Rodopsina/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(45): E9512-E9519, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078348

RESUMO

The recently discovered cation-conducting channelrhodopsins in cryptophyte algae are far more homologous to haloarchaeal rhodopsins, in particular the proton pump bacteriorhodopsin (BR), than to earlier known channelrhodopsins. They uniquely retain the two carboxylate residues that define the vectorial proton path in BR in which Asp-85 and Asp-96 serve as acceptor and donor, respectively, of the photoactive site Schiff base (SB) proton. Here we analyze laser flash-induced photocurrents and photochemical conversions in Guillardia theta cation channelrhodopsin 2 (GtCCR2) and its mutants. Our results reveal a model in which the GtCCR2 retinylidene SB chromophore rapidly deprotonates to the Asp-85 homolog, as in BR. Opening of the cytoplasmic channel to cations in GtCCR2 requires the Asp-96 homolog to be unprotonated, as has been proposed for the BR cytoplasmic channel for protons. However, reprotonation of the GtCCR2 SB occurs not from the Asp-96 homolog, but by proton return from the earlier protonated acceptor, preventing vectorial proton translocation across the membrane. In GtCCR2, deprotonation of the Asp-96 homolog is required for cation channel opening and occurs >10-fold faster than reprotonation of the SB, which temporally correlates with channel closing. Hence in GtCCR2, cation channel gating is tightly coupled to intramolecular proton transfers involving the same residues that define the vectorial proton path in BR.


Assuntos
Bacteriorodopsinas/metabolismo , Cátions/metabolismo , Channelrhodopsins/metabolismo , Ácido Aspártico/metabolismo , Linhagem Celular , Criptófitas/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Bombas de Próton/metabolismo , Prótons , Retinoides/metabolismo , Rodopsina/metabolismo , Bases de Schiff/metabolismo
6.
Biophys J ; 117(10): 2034-2040, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31676131

RESUMO

Guillardia theta anion channelrhodopsin 1 is a light-gated anion channel widely used as an optogenetic inhibitory tool. Our recently published crystal structure of its dark (closed) state revealed that the photoactive retinylidene chromophore is located midmembrane in a full-length intramolecular tunnel through the protein, the radius of which is less than that of a chloride ion. Here we show that acidic (glutamate) substitutions for residues within the inner half-tunnel enhance the fast channel closing and, for residues within the outer half-tunnel, enhance the slow channel closing. The magnitude of these effects was proportional to the distance of the mutated residue from the photoactive site. These data indicate that the local electrical field across the photoactive site controls fast and slow channel closing, involving outward and inward charge displacements. In the purified mutant proteins, we observed corresponding opposite changes in kinetics of the M photocycle intermediate. A correlation between fast closing and M rise and slow closing and M decay observed in the mutants suggests that the Schiff base proton is one of the displaced charges. Opposite signs of the effects indicate that deprotonation and reprotonation of the Schiff base take place on the same (outer) side of the membrane and explains opposite rectification of fast and slow channel closing. Оur comprehensive protein-wide acidic residue substitution screen shows that only mutations of the residues located in the intramolecular tunnel confer strong rectification, which confirms the prediction that the tunnel expands upon photoexcitation to form the anion pathway.


Assuntos
Proteínas de Algas/metabolismo , Criptófitas/metabolismo , Ativação do Canal Iônico/efeitos da radiação , Luz , Proteínas de Algas/genética , Substituição de Aminoácidos , Criptófitas/efeitos da radiação , Cinética
7.
Proc Natl Acad Sci U S A ; 113(14): E1993-2000, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001860

RESUMO

A recently discovered family of natural anion channelrhodopsins (ACRs) have the highest conductance among channelrhodopsins and exhibit exclusive anion selectivity, which make them efficient inhibitory tools for optogenetics. We report analysis of flash-induced absorption changes in purified wild-type and mutant ACRs, and of photocurrents they generate in HEK293 cells. Contrary to cation channelrhodopsins (CCRs), the ion conducting state of ACRs develops in an L-like intermediate that precedes the deprotonation of the retinylidene Schiff base (i.e., formation of an M intermediate). Channel closing involves two mechanisms leading to depletion of the conducting L-like state: (i) Fast closing is caused by a reversible L⇔M conversion. Glu-68 in Guillardia theta ACR1 plays an important role in this transition, likely serving as a counterion and proton acceptor at least at high and neutral pH. Incomplete suppression of M formation in the GtACR1_E68Q mutant indicates the existence of an alternative proton acceptor. (ii) Slow closing of the channel parallels irreversible depletion of the M-like and, hence, L-like state. Mutation of Cys-102 that strongly affected slow channel closing slowed the photocycle to the same extent. The L and M intermediates were in equilibrium in C102A as in the WT. In the position of Glu-123 in channelrhodopsin-2, ACRs contain a noncarboxylate residue, the mutation of which to Glu produced early Schiff base proton transfer and strongly inhibited channel activity. The data reveal fundamental differences between natural ACR and CCR conductance mechanisms and their underlying photochemistry, further confirming that these proteins form distinct families of rhodopsin channels.


Assuntos
Ativação do Canal Iônico , Processos Fotoquímicos , Rodopsina/fisiologia , Ânions
8.
Proc Natl Acad Sci U S A ; 112(46): 14236-41, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578767

RESUMO

Anion channelrhodopsins (ACRs) are a class of light-gated channels recently identified in cryptophyte algae that provide unprecedented fast and powerful hyperpolarizing tools for optogenetics. Analysis of photocurrents generated by Guillardia theta ACR 1 (GtACR1) and its mutants in response to laser flashes showed that GtACR1 gating comprises two separate mechanisms with opposite dependencies on the membrane voltage and pH and involving different amino acid residues. The first mechanism, characterized by slow opening and fast closing of the channel, is regulated by Glu-68. Neutralization of this residue (the E68Q mutation) specifically suppressed this first mechanism, but did not eliminate it completely at high pH. Our data indicate the involvement of another, yet-unidentified pH-sensitive group X. Introducing a positive charge at the Glu-68 site (the E68R mutation) inverted the channel gating so that it was open in the dark and closed in the light, without altering its ion selectivity. The second mechanism, characterized by fast opening and slow closing of the channel, was not substantially affected by the E68Q mutation, but was controlled by Cys-102. The C102A mutation reduced the rate of channel closing by the second mechanism by ∼100-fold, whereas it had only a twofold effect on the rate of the first. The results show that anion conductance by ACRs has a fundamentally different structural basis than the relatively well studied conductance by cation channelrhodopsins (CCRs), not attributable to simply a modification of the CCR selectivity filter.


Assuntos
Criptófitas/metabolismo , Ativação do Canal Iônico/fisiologia , Luz , Potenciais da Membrana/fisiologia , Rodopsina/metabolismo , Substituição de Aminoácidos , Criptófitas/genética , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Mutação de Sentido Incorreto , Rodopsina/genética
9.
J Biol Chem ; 291(49): 25319-25325, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789708

RESUMO

Natural anion channelrhodopsins (ACRs) recently discovered in cryptophyte algae are the most active rhodopsin channels known. They are of interest both because of their unique natural function of light-gated chloride conductance and because of their unprecedented efficiency of membrane hyperpolarization for optogenetic neuron silencing. Light-induced currents of ACRs have been studied in HEK cells and neurons, but light-gated channel conductance of ACRs in vitro has not been demonstrated. Here we report light-induced chloride channel activity of a purified ACR protein reconstituted in large unilamellar vesicles (LUVs). EPR measurements establish that the channels are inserted uniformly "inside-out" with their cytoplasmic surface facing the medium of the LUV suspension. We show by time-resolved flash spectroscopy that the photochemical reaction cycle of a functional purified ACR from Guillardia theta (GtACR1) in LUVs exhibits similar spectral shifts, indicating similar photocycle intermediates as GtACR1 in detergent micelles. Furthermore, the photocycle rate is dependent on electric potential generated by chloride gradients in the LUVs in the same manner as in voltage-clamped animal cells. We confirm with this system that, in contrast to cation-conducting channelrhodopsins, opening of the channel occurs prior to deprotonation of the Schiff base. However, the photointermediate transitions in the LUVs exhibit faster kinetics. The ACR-incorporated LUVs provide a purified defined system amenable to EPR, optical and vibrational spectroscopy, and fluorescence resonance energy transfer measurements of structural changes of ACRs with the molecules in a demonstrably functional state.


Assuntos
Criptófitas/química , Proteínas de Plantas/química , Rodopsina/química , Criptófitas/genética , Criptófitas/metabolismo , Células HEK293 , Humanos , Lipossomos/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Rodopsina/genética , Rodopsina/isolamento & purificação , Rodopsina/metabolismo
10.
Biophys J ; 110(11): 2302-2304, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27233115

RESUMO

Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Criptófitas , Rodopsinas Sensoriais/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cátions Monovalentes/metabolismo , Clorófitas , Evolução Molecular , Células HEK293 , Humanos , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Luz , Técnicas de Patch-Clamp , Polinucleotídeos/genética , Polinucleotídeos/metabolismo , Prótons , Rodopsinas Sensoriais/genética , Sódio/metabolismo
11.
Biophys J ; 109(7): 1446-53, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26445445

RESUMO

A subfamily of rhodopsin pigments was recently discovered in bacteria and proposed to function as dual-function light-driven H(+)/Na(+) pumps, ejecting sodium ions from cells in the presence of sodium and protons in its absence. This proposal was based primarily on light-induced proton flux measurements in suspensions of Escherichia coli cells expressing the pigments. However, because E. coli cells contain numerous proteins that mediate proton fluxes, indirect effects on proton movements involving endogenous bioenergetics components could not be excluded. Therefore, an in vitro system consisting of the purified pigment in the absence of other proteins was needed to assign the putative Na(+) and H(+) transport definitively. We expressed IAR, an uncharacterized member from Indibacter alkaliphilus in E. coli cell suspensions, and observed similar ion fluxes as reported for KR2 from Dokdonia eikasta. We purified and reconstituted IAR into large unilamellar vesicles (LUVs), and demonstrated the proton flux criteria of light-dependent electrogenic Na(+) pumping activity in vitro, namely, light-induced passive proton flux enhanced by protonophore. The proton flux was out of the LUV lumen, increasing lumenal pH. In contrast, illumination of the LUVs in a Na(+)-free suspension medium caused a decrease of lumenal pH, eliminated by protonophore. These results meet the criteria for electrogenic Na(+) transport and electrogenic H(+) transport, respectively, in the presence and absence of Na(+). The direction of proton fluxes indicated that IAR was inserted inside-out into our sealed LUV system, which we confirmed by site-directed spin-label electron paramagnetic resonance spectroscopy. We further demonstrate that Na(+) transport by IAR requires Na(+) only on the cytoplasmic side of the protein. The in vitro LUV system proves that the dual light-driven H(+)/Na(+) pumping function of IAR is intrinsic to the single rhodopsin protein and enables study of the transport activities without perturbation by bioenergetics ion fluxes encountered in vivo.


Assuntos
Luz , Prótons , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efeitos da radiação , Sódio/metabolismo , Escherichia coli , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Lasers , Fotólise , Análise Espectral , Lipossomas Unilamelares
12.
Biochim Biophys Acta ; 1837(5): 546-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23831552

RESUMO

A fundamental design principle of microbial rhodopsins is that they share the same basic light-induced conversion between two conformers. Alternate access of the Schiff base to the outside and to the cytoplasm in the outwardly open "E" conformer and cytoplasmically open "C" conformer, respectively, combined with appropriate timing of pKa changes controlling Schiff base proton release and uptake make the proton path through the pumps vectorial. Phototaxis receptors in prokaryotes, sensory rhodopsins I and II, have evolved new chemical processes not found in their proton pump ancestors, to alter the consequences of the conformational change or modify the change itself. Like proton pumps, sensory rhodopsin II undergoes a photoinduced E→C transition, with the C conformer a transient intermediate in the photocycle. In contrast, one light-sensor (sensory rhodopsin I bound to its transducer HtrI) exists in the dark as the C conformer and undergoes a light-induced C→E transition, with the E conformer a transient photocycle intermediate. Current results indicate that algal phototaxis receptors channelrhodopsins undergo redirected Schiff base proton transfers and a modified E→C transition which, contrary to the proton pumps and other sensory rhodopsins, is not accompanied by the closure of the external half-channel. The article will review our current understanding of how the shared basic structure and chemistry of microbial rhodopsins have been modified during evolution to create diverse molecular functions: light-driven ion transport and photosensory signaling by protein-protein interaction and light-gated ion channel activity. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Halorrodopsinas/química , Prótons , Rodopsinas Sensoriais/química , Archaea/química , Archaea/fisiologia , Bacteriorodopsinas/metabolismo , Clorófitas/química , Clorófitas/fisiologia , Euryarchaeota/química , Euryarchaeota/fisiologia , Halorrodopsinas/metabolismo , Ativação do Canal Iônico , Transporte de Íons , Luz , Transdução de Sinal Luminoso , Modelos Moleculares , Conformação Proteica , Bases de Schiff/química , Rodopsinas Sensoriais/metabolismo
13.
Biophys J ; 106(8): 1607-17, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24739160

RESUMO

In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.


Assuntos
Luz , Lisina/química , Rodopsina/química , Rodopsina/efeitos da radiação , Sequência de Aminoácidos , Chlamydomonas/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Prótons , Bases de Schiff/metabolismo , Homologia de Sequência de Aminoácidos , Análise Espectral , Relação Estrutura-Atividade
14.
Biochemistry ; 53(37): 5923-9, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25162914

RESUMO

Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.


Assuntos
Halorrodopsinas/química , Histidina/química , Rodopsinas Sensoriais/química , Halobacterium salinarum/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Mutagênese Sítio-Dirigida , Isótopos de Nitrogênio , Prótons , Bases de Schiff/química , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Biol Chem ; 288(41): 29911-22, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23995841

RESUMO

Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na(+) ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/metabolismo , Canais Iônicos/metabolismo , Rodopsina/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/fisiologia , Animais , Células Cultivadas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clorófitas/genética , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/genética , Canais Iônicos/fisiologia , Transporte de Íons/fisiologia , Luz , Biologia Marinha , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Rodopsina/genética , Rodopsina/fisiologia , Sódio/metabolismo , Espectrometria de Fluorescência
16.
J Mol Biol ; 436(5): 168298, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802216

RESUMO

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is the first discovered natural light-gated ion channel that shows higher selectivity to K+ than to Na+ and therefore is used to silence neurons with light (optogenetics). Replacement of the conserved cysteine residue in the transmembrane helix 3 (Cys110) with alanine or threonine results in a >1,000-fold decrease in the channel closing rate. The phenotype of the corresponding mutants in channelrhodopsin 2 is attributed to breaking of a specific interhelical hydrogen bond (the "DC gate"). Unlike CrChR2 and other ChRs with long distance "DC gates", the HcKCR1 structure does not reveal any hydrogen bonding partners to Cys110, indicating that the mutant phenotype is likely caused by disruption of direct interaction between this residue and the chromophore. In HcKCR1_C110A, fast photochemical conversions corresponding to channel gating were followed by dramatically slower absorption changes. Full recovery of the unphotolyzed state in HcKCR1_C110A was extremely slow with two time constants 5.2 and 70 min. Analysis of the light-minus-dark difference spectra during these slow processes revealed accumulation of at least four spectrally distinct blue light-absorbing photocycle intermediates, L, M1 and M2, and a UV light-absorbing form, typical of bacteriorhodopsin-like channelrhodopsins from cryptophytes. Our results contribute to better understanding of the mechanistic links between the chromophore photochemistry and channel conductance, and provide the basis for using HcKCR1_C110A as an optogenetic tool.


Assuntos
Channelrhodopsins , Ativação do Canal Iônico , Optogenética , Rhinosporidium , Channelrhodopsins/química , Channelrhodopsins/genética , Luz , Ativação do Canal Iônico/genética , Mutação , Cisteína/química , Cisteína/genética , Conformação Proteica em alfa-Hélice , Humanos , Células HEK293 , Sequência Conservada , Substituição de Aminoácidos
17.
Biophys J ; 104(4): 807-17, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23442959

RESUMO

Channelrhodopsins serve as photoreceptors that control the motility behavior of green flagellate algae and act as light-gated ion channels when heterologously expressed in animal cells. Here, we report direct measurements of proton transfer from the retinylidene Schiff base in several channelrhodopsin variants expressed in HEK293 cells. A fast outward-directed current precedes the passive channel current that has the opposite direction at physiological holding potentials. This rapid charge movement occurs on the timescale of the M intermediate formation in microbial rhodopsins, including that for channelrhodopsin from Chlamydomonas augustae and its mutants, reported in this study. Mutant analysis showed that the glutamate residue corresponding to Asp(85) in bacteriorhodopsin acts as the primary acceptor of the Schiff-base proton in low-efficiency channelrhodopsins. Another photoactive-site residue corresponding to Asp(212) in bacteriorhodopsin serves as an alternative proton acceptor and plays a more important role in channel opening than the primary acceptor. In more efficient channelrhodopsins from Chlamydomonas reinhardtii, Mesostigma viride, and Platymonas (Tetraselmis) subcordiformis, the fast current was apparently absent. The inverse correlation of the outward proton transfer and channel activity is consistent with channel function evolving in channelrhodopsins at the expense of their capacity for active proton transport.


Assuntos
Prótons , Rodopsinas Microbianas/metabolismo , Archaea/química , Ácido Aspártico/química , Ácido Aspártico/genética , Clorófitas/química , Ácido Glutâmico/química , Ácido Glutâmico/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/genética , Transporte de Íons , Luz , Potenciais da Membrana/genética , Mutação , Retinoides/química , Retinoides/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1965-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100316

RESUMO

Proteorhodopsins (PRs), members of the microbial rhodopsin superfamily of seven-transmembrane-helix proteins that use retinal chromophores, comprise the largest subfamily of rhodopsins, yet very little structural information is available. PRs are ubiquitous throughout the biosphere and their genes have been sequenced in numerous species of bacteria. They have been shown to exhibit ion-pumping activity like their archaeal homolog bacteriorhodopsin (BR). Here, the first crystal structure of a proteorhodopsin, that of a blue-light-absorbing proteorhodopsin (BPR) isolated from the Mediterranean Sea at a depth of 12 m (Med12BPR), is reported. Six molecules of Med12BPR form a doughnut-shaped C6 hexameric ring, unlike BR, which forms a trimer. Furthermore, the structures of two mutants of a related BPR isolated from the Pacific Ocean near Hawaii at a depth of 75 m (HOT75BPR), which show a C5 pentameric arrangement, are reported. In all three structures the retinal polyene chain is shifted towards helix C when compared with other microbial rhodopsins, and the putative proton-release group in BPR differs significantly from those of BR and xanthorhodopsin (XR). The most striking feature of proteorhodopsin is the position of the conserved active-site histidine (His75, also found in XR), which forms a hydrogen bond to the proton acceptor from the same molecule (Asp97) and also to Trp34 of a neighboring protomer. Trp34 may function by stabilizing His75 in a conformation that favors a deprotonated Asp97 in the dark state, and suggests cooperative behavior between protomers when the protein is in an oligomeric form. Mutation-induced alterations in proton transfers in the BPR photocycle in Escherichia coli cells provide evidence for a similar cross-protomer interaction of BPR in living cells and a functional role of the inter-protomer Trp34-His75 interaction in ion transport. Finally, Wat402, a key molecule responsible for proton translocation between the Schiff base and the proton acceptor in BR, appears to be absent in PR, suggesting that the ion-transfer mechanism may differ between PR and BR.


Assuntos
Bacteriorodopsinas/química , Opsinas dos Cones/química , Rodopsina/química , Bacteriorodopsinas/genética , Opsinas dos Cones/genética , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Mutação , Ressonância Magnética Nuclear Biomolecular , Transporte Proteico/genética , Prótons , Rodopsina/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
19.
Biophys Physicobiol ; 20(Supplemental): e201011, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38362336

RESUMO

Since their discovery 21 years ago, channelrhodopsins have come of age and have become indispensable tools for optogenetic control of excitable cells such as neurons and myocytes. Potential therapeutic utility of channelrhodopsins has been proven by partial vision restoration in a human patient. Previously known channelrhodopsins are either proton channels, non-selective cation channels almost equally permeable to Na+ and K+ besides protons, or anion channels. Two years ago, we discovered a group of channelrhodopsins that exhibit over an order of magnitude higher selectivity for K+ than for Na+. These proteins, known as "kalium channelrhodopsins" or KCRs, lack the canonical tetrameric selectivity filter found in voltage- and ligand-gated K+ channels, and use a unique selectivity mechanism intrinsic to their individual protomers. Mutant analysis has revealed that the key residues responsible for K+ selectivity in KCRs are located at both ends of the putative cation conduction pathway, and their role has been confirmed by high-resolution KCR structures. Expression of KCRs in mouse neurons and human cardiomyocytes enabled optical inhibition of these cells' electrical activity. In this minireview we briefly discuss major results of KCR research obtained during the last two years and suggest some directions of future research.

20.
Nat Commun ; 14(1): 4365, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474513

RESUMO

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.


Assuntos
Mamíferos , Animais , Channelrhodopsins/genética , Microscopia Crioeletrônica , Cátions/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA