Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(10): 102480, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108739

RESUMO

The Natural Product Domain Seeker (NaPDoS) webtool detects and classifies ketosynthase (KS) and condensation domains from genomic, metagenomic, and amplicon sequence data. Unlike other tools, a phylogeny-based classification scheme is used to make broader predictions about the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes in which these domains are found. NaPDoS is particularly useful for the analysis of incomplete biosynthetic genes or gene clusters, as are often observed in poorly assembled genomes and metagenomes, or when loci are not clustered, as in eukaryotic genomes. To help support the growing interest in sequence-based analyses of natural product biosynthetic diversity, here we introduce version 2 of the webtool, NaPDoS2, available at http://napdos.ucsd.edu/napdos2. This update includes the addition of 1417 KS sequences, representing a major expansion of the taxonomic and functional diversity represented in the webtool database. The phylogeny-based KS classification scheme now recognizes 41 class and subclass assignments, including new type II PKS subclasses. Workflow modifications accelerate run times, allowing larger datasets to be analyzed. In addition, default parameters were established using statistical validation tests to maximize KS detection and classification accuracy while minimizing false positives. We further demonstrate the applications of NaPDoS2 to assess PKS biosynthetic potential using genomic, metagenomic, and PCR amplicon datasets. These examples illustrate how NaPDoS2 can be used to predict biosynthetic potential and detect genes involved in the biosynthesis of specific structure classes or new biosynthetic mechanisms.


Assuntos
Produtos Biológicos , Policetídeo Sintases , Software , Genoma , Metagenômica/métodos , Peptídeo Sintases/genética , Peptídeo Sintases/química , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/química , Navegador
2.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711755

RESUMO

Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically important natural products, yet only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be delineated into different classes and subclasses based on domain organization and structural features of the compounds encoded. Notably, phylogenetic relationships among PKS ketosynthase (KS) domains provide a method to classify the larger and more complex genes in which they occur. Increased access to large metagenomic datasets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through the analysis of KS domain sequences. Here, we used the webtool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse biomes. We found biome-specific separation with soils enriched in modular cis -AT and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with PUFA and enediyne biosynthesis. By extracting full-length KS domains, we linked the phylum Actinobacteria to soil-specific enediyne and cis -AT clades and identified enediyne and monomodular KSs in phyla from which the associated compound classes have not been reported. These sequences were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting novel structures or enzyme functions remain to be discovered. Lastly, we employed our metagenome-extracted KS domains to evaluate commonly used type I KS PCR primers and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. Importance: Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis coupled with the accumulation of metagenomic sequence data provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the webtool NaPDoS2 to assess type I PKS diversity and distributions by detecting and classifying KS domains across 137 metagenomes. We show that biomes are differentially enriched in KS domain classes, providing a roadmap for future biodiscovery strategies. Further, KS phylogenies reveal both biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS dataset allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across earth's major biomes.

3.
mSystems ; 8(3): e0001223, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272717

RESUMO

Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically or otherwise commercially important natural products. Despite extensive discovery efforts, metagenomic analyses suggest that only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be further delineated based on their domain organization and the structural features of the compounds they encode. Notably, phylogenetic relationships among ketosynthase (KS) domains provide an effective method to classify the larger and more complex T1PKS genes in which they occur. Increased access to large metagenomic data sets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through their smaller and more tractable KS domain sequences. Here, we used the web tool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse, globally distributed biomes. We found biome-specific separation with soils enriched in KSs from modular cis-acetyltransferase (AT) and hybrid cis-AT KSs relative to other biomes and marine sediments enriched in KSs associated with polyunsaturated fatty acid and enediyne biosynthesis. We linked the phylum Actinobacteria to soil-derived enediyne and cis-AT KSs while marine-derived KSs associated with enediyne and monomodular PKSs were linked to phyla from which the compounds produced by these biosynthetic enzymes have not been reported. These KSs were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting they may be associated with novel structures or enzyme functions. Finally, we employed our metagenome-extracted KS domains to evaluate the PCR primers commonly used to amplify type I KSs and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. IMPORTANCE Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis, coupled with the increased availability of metagenomic sequence data, provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the web tool NaPDoS2 to assess type I polyketide synthase (PKS) diversity and distributions by detecting and classifying ketosynthase (KS) domains across 137 metagenomes. We show that biomes are differentially enriched in type I KS domains, providing a roadmap for future biodiscovery strategies. Furthermore, KS phylogenies reveal biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS data set allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of environmental KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across Earth's major biomes.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/genética , Metagenoma/genética , Filogenia , Enedi-Inos
4.
Front Microbiol ; 12: 735282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917043

RESUMO

Current knowledge of the mechanisms driving soil organic matter (SOM) turnover and responses to warming is mainly limited to surface soils, although over 50% of global soil carbon is contained in subsoils. Deep soils have different physicochemical properties, nutrient inputs, and microbiomes, which may harbor distinct functional traits and lead to different SOM dynamics and temperature responses. We hypothesized that kinetic and thermal properties of soil exoenzymes, which mediate SOM depolymerization, vary with soil depth, reflecting microbial adaptation to distinct substrate and temperature regimes. We determined the Michaelis-Menten (MM) kinetics of three ubiquitous enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) acquisition at six soil depths down to 90 cm at a temperate forest, and their temperature sensitivity based on Arrhenius/Q 10 and Macromolecular Rate Theory (MMRT) models over six temperatures between 4-50°C. Maximal enzyme velocity (V max) decreased strongly with depth for all enzymes, both on a dry soil mass and a microbial biomass C basis, whereas their affinities increased, indicating adaptation to lower substrate availability. Surprisingly, microbial biomass-specific catalytic efficiencies also decreased with depth, except for the P-acquiring enzyme, indicating distinct nutrient demands at depth relative to microbial abundance. These results suggested that deep soil microbiomes encode enzymes with intrinsically lower turnover and/or produce less enzymes per cell, reflecting distinct life strategies. The relative kinetics between different enzymes also varied with depth, suggesting an increase in relative P demand with depth, or that phosphatases may be involved in C acquisition. V max and catalytic efficiency increased consistently with temperature for all enzymes, leading to overall higher SOM-decomposition potential, but enzyme temperature sensitivity was similar at all depths and between enzymes, based on both Arrhenius/Q 10 and MMRT models. In a few cases, however, temperature affected differently the kinetic properties of distinct enzymes at discrete depths, suggesting that it may alter the relative depolymerization of different compounds. We show that soil exoenzyme kinetics may reflect intrinsic traits of microbiomes adapted to distinct soil depths, although their temperature sensitivity is remarkably uniform. These results improve our understanding of critical mechanisms underlying SOM dynamics and responses to changing temperatures through the soil profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA