Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(6): 1087-98, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768905

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1, this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1(+/-) mice to SCA1 mice (Atxn1(154Q/+)) exacerbated disease progression, whereas breeding them to Atxn1(+/-) mice normalized Ataxin1 levels and largely rescued the Pum1(+/-) phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease.


Assuntos
Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Animais , Antígenos Ly/genética , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Técnicas de Introdução de Genes , Haploinsuficiência , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Mutação , Doenças Neurodegenerativas/patologia , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/química
2.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220903

RESUMO

MOTIVATION: Developing new crop varieties with superior performance is highly important to ensure robust and sustainable global food security. The speed of variety development is limited by long field cycles and advanced generation selections in plant breeding programs. While methods to predict yield from genotype or phenotype data have been proposed, improved performance and integrated models are needed. RESULTS: We propose a machine learning model that leverages both genotype and phenotype measurements by fusing genetic variants with multiple data sources collected by unmanned aerial systems. We use a deep multiple instance learning framework with an attention mechanism that sheds light on the importance given to each input during prediction, enhancing interpretability. Our model reaches 0.754 ± 0.024 Pearson correlation coefficient when predicting yield in similar environmental conditions; a 34.8% improvement over the genotype-only linear baseline (0.559 ± 0.050). We further predict yield on new lines in an unseen environment using only genotypes, obtaining a prediction accuracy of 0.386 ± 0.010, a 13.5% improvement over the linear baseline. Our multi-modal deep learning architecture efficiently accounts for plant health and environment, distilling the genetic contribution and providing excellent predictions. Yield prediction algorithms leveraging phenotypic observations during training therefore promise to improve breeding programs, ultimately speeding up delivery of improved varieties. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/BorgwardtLab/PheGeMIL (code) and https://doi.org/doi:10.5061/dryad.kprr4xh5p (data).


Assuntos
Aprendizado Profundo , Fenômica , Triticum/genética , Melhoramento Vegetal/métodos , Seleção Genética , Fenótipo , Genótipo , Genômica/métodos , Grão Comestível/genética
3.
Theor Appl Genet ; 137(7): 152, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850423

RESUMO

KEY MESSAGE: The durable stripe rust resistance gene Yr30 was fine-mapped to a 610-kb region in which five candidate genes were identified by expression analysis and sequence polymorphisms. The emergence of genetically diverse and more aggressive races of Puccinia striiformis f. sp. tritici (Pst) in the past twenty years has resulted in global stripe rust outbreaks and the rapid breakdown of resistance genes. Yr30 is an adult plant resistance (APR) gene with broad-spectrum effectiveness and its durability. Here, we fine-mapped the YR30 locus to a 0.52-cM interval using 1629 individuals derived from residual heterozygous F5:6 plants in a Yaco"S"/Mingxian169 recombinant inbred line population. This interval corresponded to a 610-kb region in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 2.1 on chromosome arm 3BS harboring 30 high-confidence genes. Five genes were identified as candidate genes based on functional annotation, expression analysis by RNA-seq and sequence polymorphisms between cultivars with and without Yr30 based on resequencing. Haplotype analysis of the target region identified six haplotypes (YR30_h1-YR30_h6) in a panel of 1215 wheat accessions based on the 660K feature genotyping array. Lines with YR30_h6 displayed more resistance to stripe rust than the other five haplotypes. Near-isogenic lines (NILs) with Yr30 showed a 32.94% higher grain yield than susceptible counterparts when grown in a stripe rust nursery, whereas there was no difference in grain yield under rust-free conditions. These results lay a foundation for map-based cloning Yr30.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Haplótipos , Doenças das Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Mapeamento Cromossômico/métodos , Puccinia/patogenicidade , Basidiomycota/patogenicidade , Polimorfismo de Nucleotídeo Único , Cromossomos de Plantas/genética
4.
J Org Chem ; 89(11): 7644-7655, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38727567

RESUMO

An efficient protocol for the synthesis of 2,3-disubstituted phenalenones from para-quinone methides (p-QMs) and acenaphthoquinone is described. The reaction involves P(NMe2)3-mediated [1,2]-phospha-Brook rearrangement followed by Lewis acid-assisted 1,2-carbonyl migration to afford the 2,3-disubstituted phenalenones. The developed protocol tolerates a broad range of substrates to form a variety of phenalenones in good to excellent yields. Moreover, the utility of the synthesized phenalenones is also demonstrated by performing its transformations to other adducts.

5.
Org Biomol Chem ; 22(20): 4072-4076, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717247

RESUMO

A practical and straightforward protocol to access trifluoromethylated/perfluoroalkylated heteroarenes via radical-type nucleophilic substitution rather than typical radical-type electrophilic substitution is described here. The substrate scope was observed to be broad and diverse-covering arenes, heteroarenes (containing N, O, S), bioactive cores, and allylic cores. Mechanistic studies confirmed a radical-mediated reaction pathway.

6.
J Chem Inf Model ; 64(1): 138-149, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37983534

RESUMO

Osmolytes, small organic compounds, play a key role in modulating the protein stability in aqueous solutions, but the operating mechanism of the osmolyte remains inconclusive. Here, we attempt to clarify the mode of osmolyte action by quantitatively estimating the microheterogeneity of osmolyte-water mixtures with the aid of molecular dynamics simulation, graph theoretical analysis, and spatial distribution measurement in the four osmolyte solutions of trimethylamine-N-oxide (TMAO), tetramethylurea (TMU), dimethyl sulfoxide, and urea. TMAO, acting as a protecting osmolyte, tends to remain isolated with no formation of osmolyte aggregates while preferentially interacting with water, but there is a strong aggregation propensity in the denaturant TMU solution, characterized by favored hydrophobic interactions between TMU molecules. Taken together, the mechanism of osmolyte action on protein stability is proposed as a comprehensive one that encompasses the direct interactions between osmolytes and proteins and indirect interactions through the regulation of water properties in the osmolyte-water mixtures.


Assuntos
Metilaminas , Água , Água/química , Metilaminas/química , Simulação de Dinâmica Molecular , Proteínas , Ureia/química , Soluções
7.
Phys Chem Chem Phys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953296

RESUMO

In the phase diagram of binary liquid mixtures, a miscibility gap is found with the concomitant liquid-liquid phase separation, wherein temperature is a key parameter in modulating the phase behavior. This includes critical temperatures such as the lower critical solution temperature (LCST) and upper critical solution temperature (UCST). Using a comprehensive approach including molecular dynamics (MD) simulation, graph theoretical analysis and spatial inhomogeneity measurement in an LCST-type mixture, we attempt to establish the relationship between the molecular aggregation pattern and phase behavior in TEA-water mixtures. At lower temperatures of binary liquid mixtures, TEA molecules tend to aggregate while simultaneously interacting with water forming a homogeneous solution. As the temperature increases, these TEA aggregates tend to self-associate by minimizing the interaction with water, which facilitates formation of two distinct liquid phases in the binary liquid. The spatial distribution analysis also reveals that the TEA aggregates compatible with water promote uniform distribution of water molecules, maintaining a homogeneous solution, while the water-incompatible ones generate isolation of water H-bond aggregates, leading to liquid-liquid phase separation in the binary system. This current study on temperature-induced molecular aggregation behavior is anticipated to contribute to a critical understanding of the phase behavior in binary liquid mixtures, including UCST, LCST, and reentrant phase behavior.

8.
Bioorg Chem ; 143: 107082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199142

RESUMO

The multi-target directed ligand (MTDL) discovery has been gaining immense attention in the development of therapeutics for Alzheimer's disease (AD). The strategy has been evolved as an auspicious approach suitable to combat the heterogeneity and the multifactorial nature of AD. Therefore, multi-targetable chalcone derivatives bearing N-aryl piperazine moiety were designed, synthesized, and evaluated for the treatment of AD. All the synthesized compounds were screened for thein vitro activityagainst acetylcholinesterase (AChE), butylcholinesterase (BuChE), ß-secretase-1 (BACE-1), and inhibition of amyloid ß (Aß) aggregation. Amongst all the tested derivatives, compound 41bearing unsubstituted benzylpiperazine fragment and para-bromo substitution at the chalcone scaffold exhibited balanced inhibitory profile against the selected targets. Compound 41 elicited favourable permeation across the blood-brain barrier in the PAMPA assay. The molecular docking and dynamics simulation studies revealed the binding mode analysis and protein-ligand stability ofthe compound with AChE and BACE-1. Furthermore,itameliorated cognitive dysfunctions and signified memory improvement in thein-vivobehavioural studies (scopolamine-induced amnesia model). Theex vivobiochemical analysis of mice brain homogenates established the reduced AChE and increased ACh levels. The antioxidant activity of compound 41 was accessed with the determination of catalase (CAT) and malondialdehyde (MDA) levels. The findings suggested thatcompound 41, containing a privileged chalcone scaffold, can act as a lead molecule for developing AD therapeutics.


Assuntos
Doença de Alzheimer , Chalcona , Chalconas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Chalconas/química , Acetilcolinesterase/metabolismo , Piperazina/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Piperazinas/farmacologia , Relação Estrutura-Atividade , Desenho de Fármacos
9.
Mol Divers ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517648

RESUMO

Cathepsin B is a cysteine protease lysosomal enzyme involved in several physiological functions. Overexpression of the enzyme enhances its proteolytic activity and causes the breakdown of amyloid precursor protein (APP) into neurotoxic amyloid ß (Aß), a characteristic hallmark of Alzheimer's disease (AD). Therefore, inhibition of the enzyme is a crucial therapeutic aspect for treating the disease. Combined structure and ligand-based drug design strategies were employed in the current study to identify the novel potential cathepsin B inhibitors. Five different pharmacophore models were developed and used for the screening of the ZINC-15 database. The obtained hits were analyzed for the presence of duplicates, interfering PAINS moieties, and structural similarities based on Tanimoto's coefficient. The molecular docking study was performed to screen hits with better target binding affinity. The top seven hits were selected and were further evaluated based on their predicted ADME properties. The resulting best hits, ZINC827855702, ZINC123282431, and ZINC95386847, were finally subjected to molecular dynamics simulation studies to determine the stability of the protein-ligand complex during the run. ZINC123282431 was obtained as the virtual lead compound for cathepsin B inhibition and may be a promising novel anti-Alzheimer agent.

10.
Theor Appl Genet ; 136(9): 185, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566234

RESUMO

KEY MESSAGE: We mapped a new race-specific seedling stripe rust resistance gene on wheat chromosome 5BL and a new APR locus QYr.hazu-2BS from CIMMYT wheat line Kfa/2*Kachu. Breeding resistant wheat (Triticum aestivum) varieties is the most economical and efficient way to manage wheat stripe rust, but requires the prior identification of new resistance genes and development of associated molecular markers for marker-assisted selection. To map stripe rust resistance loci in wheat, we used a recombinant inbred line population generated by crossing the stripe rust-resistant parent 'Kfa/2*Kachu' and the susceptible parent 'Apav#1'. We employed genotyping-by-sequencing and bulked segregant RNA sequencing to map a new race-specific seedling stripe rust resistance gene, which we designated YrK, to wheat chromosome arm 5BL. TraesCS5B02G330700 encodes a receptor-like kinase and is a high-confidence candidate gene for YrK based on virus-induced gene silencing results and the significant induction of its expression 24 h after inoculation with wheat stripe rust. To assist breeding, we developed functional molecular markers based on the polymorphic single nucleotide polymorphisms in the coding sequence region of YrK. We also mapped four adult plant resistance (APR) loci to wheat chromosome arms 1BL, 2AS, 2BS and 4AL. Among these APR loci, we determined that QYr.hazu-1BL and QYr.hazu-2AS are allelic to the known pleiotropic resistance gene Lr46/Yr29/Pm39 and the race-specific gene Yr17, respectively. However, QYr.hazu-2BS is likely a new APR locus, for which we converted closely linked SNP polymorphisms into breeder-friendly Kompetitive allele-specific PCR (KASP) markers. In the present study, we provided new stripe rust resistance locus/gene and molecular markers for wheat breeder to develop rust-resistant wheat variety.


Assuntos
Basidiomycota , Resistência à Doença , Doenças das Plantas , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia , China
11.
Theor Appl Genet ; 136(3): 39, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897402

RESUMO

KEY MESSAGE: Fine mapping of a major stripe rust resistance locus QYrXN3517-1BL to a 336 kb region that includes 12 candidate genes. Utilization of genetic resistance is an effective strategy to control stripe rust disease in wheat. Cultivar XINONG-3517 (XN3517) has remained highly resistant to stripe rust since its release in 2008. To understand the genetic architecture of stripe rust resistance, Avocet S (AvS) × XN3517 F6 RIL population was assessed for stripe rust severity in five field environments. The parents and RILs were genotyped by using the GenoBaits Wheat 16 K Panel. Four stable QTL from XINONG-3517 were detected on chromosome arms 1BL, 2AL, 2BL, and 6BS, named as QYrXN3517-1BL, QYrXN3517-2AL, QYrXN3517-2BL, and QYrXN3517-6BS, respectively. Based on the Wheat 660 K array and bulked segregant exome sequencing (BSE-Seq), the most effective QTL on chromosome 1BL is most likely different from the known adult plant resistance gene Yr29 and was mapped to a 1.7 cM region [336 kb, including twelve candidate genes in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0]. The 6BS QTL was identified as Yr78, and the 2AL QTL was probably same as QYr.caas-2AL or QYrqin.nwafu-2AL. The novel QTL on 2BL was effective in seedling stage against the races used in phenotyping. In addition, allele-specifc quantitative PCR (AQP) marker nwafu.a5 was developed for QYrXN3517-1BL to assist marker-assisted breeding.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Triticum/genética , Sequenciamento do Exoma , Resistência à Doença/genética , Melhoramento Vegetal , Estudos de Associação Genética , Doenças das Plantas/genética
12.
J Org Chem ; 88(15): 10325-10338, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37460945

RESUMO

[1,2]-Phospha-Brook rearrangement entails the generation of α-oxygenated carbanions via the umpolung process. Recently, these anionic species have been widely utilized for several C-C bond forming strategies, providing various useful frameworks that are difficult to access through conventional approaches. However, the application of this powerful methodology in the development of chiral strategies is still at the nascent stage due to challenges involved in controlling chemoselectivity and enantioselectivity. This synopsis provides a detailed summary of diastereo- and/or enantioselective chemical transformations using [1,2]-phospha-Brook rearrangement.

13.
J Org Chem ; 88(12): 7712-7723, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36445901

RESUMO

An unprecedented organocatalyzed asymmetric vinylogous Michael reaction between 3-cyano-4-methylcoumarins and maleimides with an excellent enantiomeric ratio (up to 99.5:0.5) and yield (up to 95%) is reported. This remarkable selectivity is attributed to the hydrogen bonding ability of l-tert-leucine-derived amine thiourea catalyst. The versatility, practical applicability, and scalability are demonstrated by the generation of γ-functionalized coumarin derivatives.


Assuntos
Aminas , Cumarínicos , Maleimidas , Estereoisomerismo , Catálise
14.
Bioorg Med Chem ; 87: 117311, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37182518

RESUMO

The design, synthesis, and conformational analysis of a novel aromatic oligoester helix mimetic scaffold is reported. A range of amino acid-type side-chain functionality can be readily incorporated into monomer building blocks over three facile synthetic steps. Analysis of representative dimers revealed a stable conformer capable of effective mimicry of a canonical α-helix and the scaffold was found to be surprisingly stable to degradation in aqueous solutions at acidic and neutral pH.


Assuntos
Aminoácidos , Biomimética , Estrutura Secundária de Proteína
15.
Methods ; 204: 286-299, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257897

RESUMO

DDX43 (DEAD-box helicase 43), also known as HAGE (helicase antigen gene), is a member of the DEAD-box protein family. It contains a K homology (KH) domain in its N terminus, a helicase core domain in its C terminus, and a flexible linker domain in between. DDX43 expression is low or undetectable in normal tissue, but is overexpressed in many tumors; therefore, it is considered a potential target molecule for cancer therapy. We, along with other groups, have shown that DDX43 is an ATP-dependent RNA and DNA helicase, and the KH domain is required for its ATPase and unwinding activity. Electrophoretic mobility shift assay (EMSA), SELEX (systematic evolution of ligands by exponential enrichment), chromatin immunoprecipitation (ChIP)-seq, crosslinking immunoprecipitation (CLIP)-seq, and nuclear magnetic resonance (NMR) showed that the KH domain prefers to bind pyrimidine-rich ssDNA and ssRNA, such as TTGT in the promoter regions of genes. Moreover, the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase. No animal model has been generated for DDX43; cellular studies have revealed that DDX43 has roles in piRNA amplification, tumorigenesis, RAS signaling, and innate immunity. Structural and functional studies of DDX43 will not only advance our understanding of DEAD-box helicases and KH domains, but also shed light on the application of DDX43 as therapeutics, where its key binding sites can be targeted by small molecules and natural products as an alternative approach in treating DDX43 overexpressed cancers.


Assuntos
RNA Helicases DEAD-box , RNA , Sítios de Ligação , RNA Helicases DEAD-box/química , DNA Helicases/metabolismo , RNA/química , Especificidade por Substrato
16.
Mol Cell Proteomics ; 20: 100073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757833

RESUMO

Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, but the molecular mechanisms underlying their activity remain elusive. In this study we profiled proteomics and redox proteomics changes induced by AgNPs in two lung cancer cell lines: AgNPs-sensitive Calu-1 and AgNPs-resistant NCI-H358. We show that AgNPs induce changes in protein abundance and reversible oxidation in a time and cell-line-dependent manner impacting critical cellular processes such as protein translation and modification, lipid metabolism, bioenergetics, and mitochondrial dynamics. Supporting confocal microscopy and transmission electron microscopy (TEM) data further emphasize mitochondria as a target of AgNPs toxicity differentially impacting mitochondrial networks and morphology in Calu-1 and NCI-H358 lung cells. Proteomics data are available via ProteomeXchange with identifier PXD021493.


Assuntos
Neoplasias Pulmonares/metabolismo , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Oxirredução , Proteômica
17.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569535

RESUMO

Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genômica
18.
J Vector Borne Dis ; 60(3): 307-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37843242

RESUMO

BACKGROUND & OBJECTIVES: Lymphatic filariasis is targeted for elimination in India through mass drug administration (MDA) with diethylcarbamazine (DEC) combined with albendazole (ABZ). To assess the coverage, compliance and causes for non-compliance towards MDA in an endemic district of Uttar Pradesh (U.P.), north India. METHODS: A cross-sectional coverage evaluation survey was conducted in 24 rural and 6 urban clusters of Ghazipur district in eastern U.P. using multi-stage random sampling technique with probability proportional to estimated size (PPES). Data was collected in a semi-structured Performa from all the individuals in the selected households by interview technique. Bivariate analysis was performed to identify the factors associated with non-consumption of MDA drugs. RESULTS: A total of 1422 individuals were surveyed from 30 randomly selected subunits of which 1401 (98.5%) were eligible for MDA at the time of the round. Majority of the participants were in the age-group of 15-59 years (67.0%) and were males (53.3%). The overall coverage of MDA (both drugs) among the eligible population in Ghazipur district was 58.5%. Compliance among those who had received both the drugs was 61.6% with effective coverage of 36.0%. The coverage was significantly higher in rural areas compared to the urban clusters (p<0.0001). The most common reason quoted for not consuming drugs was fear of side effects (34.9%). However, the incidence of adverse events among those who consumed the drugs was only 2.5%. None of the socio-demographic variables showed a significant association with the compliance to the drugs. INTERPRETATION & CONCLUSION: Coverage and compliance of MDA in Ghazipur district of U.P., India was found to be below satisfactory levels. Targeted Information Education and Communication (IEC) campaigns focusing on the safety of drugs and the necessity of MDA, and mass mobilization with effective monitoring and supervision is the need of the hour for effective coverage of MDA Programme.


Assuntos
Filariose Linfática , Filaricidas , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Feminino , Filariose Linfática/tratamento farmacológico , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Administração Massiva de Medicamentos , Filaricidas/uso terapêutico , Estudos Transversais , Dietilcarbamazina/uso terapêutico , Albendazol/uso terapêutico , Índia/epidemiologia
19.
J Biol Chem ; 296: 100041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33162395

RESUMO

O-acetyl serine sulfhydrylase (OASS), referred to as cysteine synthase (CS), synthesizes cysteine from O-acetyl serine (OAS) and sulfur in bacteria and plants. The inherent challenge for CS is to overcome 4 to 6 log-folds stronger affinity for its natural inhibitor, serine acetyltransferase (SAT), as compared with its affinity for substrate, OAS. Our recent study showed that CS employs a novel competitive-allosteric mechanism to selectively recruit its substrate in the presence of natural inhibitor. In this study, we trace the molecular features that control selective substrate recruitment. To generalize our findings, we used CS from three different bacteria (Haemophilus, Salmonella, and Mycobacterium) as our model systems and analyzed structural and substrate-binding features of wild-type CS and its ∼13 mutants. Results show that CS uses a noncatalytic residue, M120, located 20 Šaway from the reaction center, to discriminate in favor of substrate. M120A and background mutants display significantly reduced substrate binding, catalytic efficiency, and inhibitor binding. Results shows that M120 favors the substrate binding by selectively enhancing the affinity for the substrate and disengaging the inhibitor by 20 to 286 and 5- to 3-folds, respectively. Together, M120 confers a net discriminative force in favor of substrate by 100- to 858-folds.


Assuntos
Cisteína Sintase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Substituição de Aminoácidos , Catálise , Dicroísmo Circular , Cristalografia por Raios X , Cisteína Sintase/antagonistas & inibidores , Cisteína Sintase/química , Inibidores Enzimáticos/farmacologia , Cinética , Metionina/química , Conformação Proteica , Especificidade por Substrato
20.
J Biol Chem ; 296: 100712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33915127

RESUMO

The retinal insulin receptor (IR) exhibits basal kinase activity equivalent to that of the liver of fed animals, but unlike the liver, does not fluctuate with feeding and fasting; it also declines rapidly after the onset of insulin-deficient diabetes. The ligand(s) that determine basal IR activity in the retina has not been identified. Using a highly sensitive insulin assay, we found that retinal insulin concentrations remain constant in fed versus fasted rats and in diabetic versus control rats; vitreous fluid insulin levels were undetectable. Neutralizing antibodies against insulin-like growth factor 2 (IGF-2), but not insulin-like growth factor 1 (IGF-1) or insulin, decreased IR kinase activity in normal rat retinas, and depletion of IGF-2 from serum specifically reduced IR phosphorylation in retinal cells. Immunoprecipitation studies demonstrated that IGF-2 induced greater phosphorylation of the retinal IR than the IGF-1 receptor. Retinal IGF-2 mRNA content was 10-fold higher in adults than pups and orders of magnitude higher than in liver. Diabetes reduced retinal IGF-2, but not IGF-1 or IR, mRNA levels, and reduced IGF-2 and IGF-1 content in vitreous fluid. Finally, intravitreal administration of IGF-2 (mature and pro-forms) increased retinal IR and Akt kinase activity in diabetic rats. Collectively, these data reveal that IGF-2 is the primary ligand that defines basal retinal IR activity and suggest that reduced ocular IGF-2 may contribute to reduced IR activity in response to diabetes. These findings may have importance for understanding the regulation of metabolic and prosurvival signaling in the retina.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Receptor de Insulina/metabolismo , Retina/metabolismo , Animais , Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA